948 resultados para Reynolds number
Resumo:
Background: Current methodology of gene expression analysis limits the possibilities of comparison between cells/tissues of organs in which cell size and/or number changes as a consequence of the study (e.g. starvation). A method relating the abundance of specific mRNA copies per cell may allow direct comparison or different organs and/or changing physiological conditions. Methods: With a number of selected genes, we analysed the relationship of the number of bases and the fluorescence recorded at a present level using cDNA standards. A lineal relationship was found between the final number of bases and the length of the transcript. The constants of this equation and those of the relationship between fluorescence and number of bases in cDNA were determined and a general equation linking the length of the transcript and the initial number of copies of mRNA was deduced for a given pre-established fluorescence setting. This allowed the calculation of the concentration of the corresponding mRNAs per g of tissue. The inclusion of tissue RNA and the DNA content per cell, allowed the calculation of the mRNA copies per cell. Results: The application of this procedure to six genes: Arbp, cyclophilin, ChREBP, T4 deiodinase 2, acetyl-CoA carboxylase 1 and IRS-1, in liver and retroperitoneal adipose tissue of food-restricted rats allowed precise measures of their changes irrespective of the shrinking of the tissue, the loss of cells or changes in cell size, factors that deeply complicate the comparison between changing tissue conditions. The percentage results obtained with the present methods were essentially the same obtained with the delta-delta procedure and with individual cDNA standard curve quantitative RT-PCR estimation. Conclusion: The method presented allows the comparison (i.e. as copies of mRNA per cell) between different genes and tissues, establishing the degree of abundance of the different molecular species tested.
Resumo:
Résumé : Le glioblastome (GBM, WHO grade IV) est la tumeur cérébrale primaire la plus fréquente et la plus maligne, son pronostic reste très réservé et sa réponse aux différents traitements limitée. Récemment, une étude clinique randomisée (EORTC 26981/NCIC CE.3) a démontré que le traitement combiné de temozolomide et radiothérapie (RT/TMZ) est le meilleur dans les cas de GBM nouvellement diagnostiqués [1]. Cependant, seul un sous-groupe de patients bénéficie du traitement RT/TMZ et même parmi eux, leur survie reste très limitée. Pour tenter de mieux comprendre les réponses au traitement RT/TMZ, la biologie du GBM, identifier d'autres facteurs de résistance et découvrir de nouvelles cibles aux traitements, nous avons conduit une analyse moléculaire étendue à 73 patients inclus dans cette étude clinique. Nous avons complété les résultats moléculaires déjà obtenus par un profil génomique du nombre de copies par Array Comparative Genomic Hybridization. Afin d'atteindre nos objectifs, nous avons analysé en parallèle les données cliniques des patients et leurs profils moléculaires. Nos résultats confirment des analyses connues dans le domaine des aberrations du nombre de copies (CNA) et de profils du glioblastome. Nous avons observé une bonne corrélation entre le CNA génomique et l'expression de l'ARN messager dans le glioblastome et identifié un nouveau modèle de CNA du chromosome 7 pouvant présenter un intérêt clinique. Nous avons aussi observé par l'analyse du CNA que moins de 10% des glioblastomes conservent leurs mécanismes de suppression de tumeurs p53 et Rb1. Nous avons aussi observé que l'amplification du CDK4 peut constituer un facteur supplémentaire de résistance au traitement RT/TMZ, cette observation nécessite confirmation sur un plus grand nombre d'analyses. Nous avons montré que dans notre analyse des profils moléculaires et cliniques, il n'est pas possible de différencier le GBM à composante oligodendrogliale (GBM-O) du glioblastome. En superposant les profils moléculaires et les modèles expérimentaux in vitro, nous avons identifié WIF-1 comme un gène suppresseur de tumeur probable et une activation du signal WNT dans la pathologie du glioblastome. Ces observations pourraient servir à une meilleure compréhension de cette maladie dans le futur. Abstract : Glioblastoma, (GBM, WHO grade IV) is the most malignant and most frequent primary brain tumor with a very poor prognosis and response to therapy. A recent randomized clinical trial (EORTC26981/NCIC CE.3) established RT/TMZ as the 1St effective chemo-radiation therapy in newly diagnosed GBM [1]. However only a genetic subgroup of patients benefit from RT/TMZ and even in this subgroup overall survival remains very dismal. To explain the observed response to RT/TMZ, have a better understanding of GBM biology, identify other resistance factors and discover new drugable targets a comprehensive molecular analysis was performed in 73 of these GBM trial cohort. We complemented the available molecular data with a genomic copy number profiling by Array Comparative Genomic Hybridization. We proceeded to align the molecular profiles and the Clinical data, to meet our project objectives. Our data confirm known GBM Copy Number Aberrations and profiles. We observed a good correlation of genomic CN and mRNA expression in GBM, and identified new interesting CNA pattern for chromosome 7 with a potential clinical value. We also observed that by copy number aberration data alone, less than 10% of GBM have an intact p53 and Rb1 tumor .suppressor pathways. We equally observed that CDK4 amplification might constitute an additional RT/TMZ resistant factor, an observation that will need confirmation in a larger data set. We show that the molecular and clinical profiles in our data set, does not support the identification of GBM-O as a new entity in GBM. By combining the molecular profiles and in vitro model experiments we identify WIF1 as a potential GBM TSG and an activated WNT signaling as a pathologic event in GBM worth incorporation in attempts to better understand and impact outcome in this disease.
Resumo:
Background: MLPA method is a potentially useful semi-quantitative method to detect copy number alterations in targeted regions. In this paper, we propose a method for the normalization procedure based on a non-linear mixed-model, as well as a new approach for determining the statistical significance of altered probes based on linear mixed-model. This method establishes a threshold by using different tolerance intervals that accommodates the specific random error variability observed in each test sample.Results: Through simulation studies we have shown that our proposed method outperforms two existing methods that are based on simple threshold rules or iterative regression. We have illustrated the method using a controlled MLPA assay in which targeted regions are variable in copy number in individuals suffering from different disorders such as Prader-Willi, DiGeorge or Autism showing the best performace.Conclusion: Using the proposed mixed-model, we are able to determine thresholds to decide whether a region is altered. These threholds are specific for each individual, incorporating experimental variability, resulting in improved sensitivity and specificity as the examples with real data have revealed.
Resumo:
For over three decades, the number of Iowa inmates with life sentences has shown a steady increase. As the chart below shows, that number has risen from 111 in 1980 to 680 in 2012 (data for 1987 is unavailable due to transitioning to new data systems)
Resumo:
Adenovirus serotype 5 (Ad5) vectors and specific neutralizing antibodies (NAbs) generate immune complexes (ICs) which are potent inducers of dendritic cell (DC) maturation. Here we show that ICs generated with rare Ad vector serotypes, such as Ad26 and Ad35, which are lead candidates in HIV vaccine development, are poor inducers of DC maturation and that their potency in inducing DC maturation strongly correlated with the number of Toll-like receptor 9 (TLR9)-agonist motifs present in the Ad vector's genome. In addition, we showed that antihexon but not antifiber antibodies are responsible for the induction of Ad IC-mediated DC maturation.
Resumo:
The loss of presynaptic markers is thought to represent a strong pathologic correlate of cognitive decline in Alzheimer's disease (AD). Spinophilin is a postsynaptic marker mainly located to the heads of dendritic spines. We assessed total numbers of spinophilin-immunoreactive puncta. in the CA I and CA3 fields of hippocampus and area 9 in 18 elderly individuals with various degrees of cognitive decline. The decrease in spinophilin-immunoreactivity was significantly related to both Braak neurofibrillary tangle (NFT) staging and clinical severity but not A beta deposition staging. The total number of spinophilin-immunoreactive puncta in CA I field and area 9 were significantly related to MMSE scores and predicted 23.5 and 61.9% of its variability. The relationship between total number of spinophilin-immunoreactive puncta in CA I field and MMSE scores did not persist when adjusting for Braak NFT staging. In contrast, the total number of spinophilin-immunoreactive puncta in area 9 was still significantly related to the cognitive outcome explaining an extra 9.6% of MMSE and 25.6% of the Clinical Dementia Rating scores variability. Our data suggest that neocortical dendritic spine loss is an independent parameter to consider in AD clinicopathologic correlations.
Resumo:
BACKGROUND: Genotypes obtained with commercial SNP arrays have been extensively used in many large case-control or population-based cohorts for SNP-based genome-wide association studies for a multitude of traits. Yet, these genotypes capture only a small fraction of the variance of the studied traits. Genomic structural variants (GSV) such as Copy Number Variation (CNV) may account for part of the missing heritability, but their comprehensive detection requires either next-generation arrays or sequencing. Sophisticated algorithms that infer CNVs by combining the intensities from SNP-probes for the two alleles can already be used to extract a partial view of such GSV from existing data sets. RESULTS: Here we present several advances to facilitate the latter approach. First, we introduce a novel CNV detection method based on a Gaussian Mixture Model. Second, we propose a new algorithm, PCA merge, for combining copy-number profiles from many individuals into consensus regions. We applied both our new methods as well as existing ones to data from 5612 individuals from the CoLaus study who were genotyped on Affymetrix 500K arrays. We developed a number of procedures in order to evaluate the performance of the different methods. This includes comparison with previously published CNVs as well as using a replication sample of 239 individuals, genotyped with Illumina 550K arrays. We also established a new evaluation procedure that employs the fact that related individuals are expected to share their CNVs more frequently than randomly selected individuals. The ability to detect both rare and common CNVs provides a valuable resource that will facilitate association studies exploring potential phenotypic associations with CNVs. CONCLUSION: Our new methodologies for CNV detection and their evaluation will help in extracting additional information from the large amount of SNP-genotyping data on various cohorts and use this to explore structural variants and their impact on complex traits.
Resumo:
This order strengthens the Governor's Science, Technology, Engineering and Mathematics (STEM) Advisory Council.
Resumo:
This order has developed a Task Force for the Department of Human Services to schedule trauma-informed care training for staff at the Iowa Juvenile Home within 30 days. Titled Iowa Juvenile Home protection Task Force.
Resumo:
This order mandates that the State of Iowa, not the federal government or any other organization, shall determine the content of Iowa's state academic standards, which are known as the Iowa Core. The Iowa Department of Education shall develop a regular review cycle for the Iowa Core, including public comment, to determine the contents of and to continually improve state, academic standards.
Resumo:
Macroscopic features such as volume, surface estimate, thickness and caudorostral length of the human primary visual cortex (Brodman's area 17) of 46 human brains between midgestation and 93 years were studied by means of camera lucida drawings from serial frontal sections. Individual values were best fitted by a logistic function from midgestation to adulthood and by a regression line between adulthood and old age. Allometric functions were calculated to study developmental relationships between all the features. The three-dimensional shape of area 17 was also reconstructed from the serial sections in 15 cases and correlated with the sequence of morphological events. The sulcal pattern of area 17 begins to develop around 21 weeks of gestation but remains rather simple until birth, while it becomes more convoluted, particularly in the caudal part, during the postnatal period. Until birth, a large increase in cortical thickness (about 83% of its mean adult value) and caudorostral length (69%) produces a moderate increase in cortical volume (31%) and surface estimate (40%) of area 17. After birth, the cortical volume and surface undergo their maximum growth rate, in spite of a rather small increase in cortical thickness and caudorostral length. This is due to the development of the pattern of gyrification within and around the calcarine fissure. All macroscopic features have reached the mean adult value by the end of the first postnatal year. With aging, the only features to undergo significant regression are the cortical surface estimate and the caudorostral length. The total number of neurons in area 17 shows great interindividual variability at all ages. No decrease in the postnatal period or in aging could be demonstrated.
Resumo:
IRENE’s mission is to improve the health and well-being of Iowans through collaboration in practice-based research on questions important to primary care physicians and their patients. IRENE’s purpose is to create and foster a network of research collaboration between the academic medical center and primary care physicians through out the state of Iowa with a particular focus on improving rural health.
Resumo:
IRENE’s mission is to improve the health and well-being of Iowans through collaboration in practice-based research on questions important to primary care physicians and their patients. IRENE’s purpose is to create and foster a network of research collaboration between the academic medical center and primary care physicians through out the state of Iowa with a particular focus on improving rural health.
Resumo:
IRENE’s mission is to improve the health and well-being of Iowans through collaboration in practice-based research on questions important to primary care physicians and their patients. IRENE’s purpose is to create and foster a network of research collaboration between the academic medical center and primary care physicians through out the state of Iowa with a particular focus on improving rural health.