949 resultados para Reverse-transcriptase
Resumo:
Ace is an adhesin to collagen from Enterococcus faecalis expressed conditionally after growth in serum or in the presence of collagen. Here, we generated an ace deletion mutant and showed that it was significantly attenuated versus wild-type OG1RF in a mixed infection rat endocarditis model (P<0.0001), while no differences were observed in a peritonitis model. Complemented OG1RFDeltaace (pAT392::ace) enhanced early (4 h) heart valve colonization versus OG1RFDeltaace (pAT392) (P = 0.0418), suggesting that Ace expression is important for early attachment. By flow cytometry using specific anti-recombinant Ace (rAce) immunoglobulins (Igs), we showed in vivo expression of Ace by OG1RF cells obtained directly from infected vegetations, consistent with our previous finding of anti-Ace antibodies in E. faecalis endocarditis patient sera. Finally, rats actively immunized against rAce were less susceptible to infection by OG1RF than non-immunized (P = 0.0004) or sham-immunized (P = 0.0475) by CFU counts. Similarly, animals given specific anti-rAce Igs were less likely to develop E. faecalis endocarditis (P = 0.0001) and showed fewer CFU in vegetations (P = 0.0146). In conclusion, we have shown for the first time that Ace is involved in pathogenesis of, and is useful for protection against, E. faecalis experimental endocarditis.
Resumo:
Attention has recently been drawn to Enterococcus faecium because of an increasing number of nosocomial infections caused by this species and its resistance to multiple antibacterial agents. However, relatively little is known about the pathogenic determinants of this organism. We have previously identified a cell-wall-anchored collagen adhesin, Acm, produced by some isolates of E. faecium, and a secreted antigen, SagA, exhibiting broad-spectrum binding to extracellular matrix proteins. Here, we analysed the draft genome of strain TX0016 for potential microbial surface components recognizing adhesive matrix molecules (MSCRAMMs). Genome-based bioinformatics identified 22 predicted cell-wall-anchored E. faecium surface proteins (Fms), of which 15 (including Acm) had characteristics typical of MSCRAMMs, including predicted folding into a modular architecture with multiple immunoglobulin-like domains. Functional characterization of one [Fms10; redesignated second collagen adhesin of E. faecium (Scm)] revealed that recombinant Scm(65) (A- and B-domains) and Scm(36) (A-domain) bound to collagen type V efficiently in a concentration-dependent manner, bound considerably less to collagen type I and fibrinogen, and differed from Acm in their binding specificities to collagen types IV and V. Results from far-UV circular dichroism measurements of recombinant Scm(36) and of Acm(37) indicated that these proteins were rich in beta-sheets, supporting our folding predictions. Whole-cell ELISA and FACS analyses unambiguously demonstrated surface expression of Scm in most E. faecium isolates. Strikingly, 11 of the 15 predicted MSCRAMMs clustered in four loci, each with a class C sortase gene; nine of these showed similarity to Enterococcus faecalis Ebp pilus subunits and also contained motifs essential for pilus assembly. Antibodies against one of the predicted major pilus proteins, Fms9 (redesignated EbpC(fm)), detected a 'ladder' pattern of high-molecular-mass protein bands in a Western blot analysis of cell surface extracts from E. faecium, suggesting that EbpC(fm) is polymerized into a pilus structure. Further analysis of the transcripts of the corresponding gene cluster indicated that fms1 (ebpA(fm)), fms5 (ebpB(fm)) and ebpC(fm) are co-transcribed, a result consistent with those for pilus-encoding gene clusters of other Gram-positive bacteria. All 15 genes occurred frequently in 30 clinically derived diverse E. faecium isolates tested. The common occurrence of MSCRAMM- and pilus-encoding genes and the presence of a second collagen-binding protein may have important implications for our understanding of this emerging pathogen.
Resumo:
OBJECTIVE: This study sought to characterize the inflammatory infiltrate in ascending thoracic aortic aneurysm in patients with Marfan syndrome, familial thoracic aortic aneurysm, or nonfamilial thoracic aortic aneurysm. BACKGROUND: Thoracic aortic aneurysms are associated with a pathologic lesion termed "medial degeneration," which is described as a noninflammatory lesion. Thoracic aortic aneurysms are a complication of Marfan syndrome and can be inherited in an autosomal dominant manner of familial thoracic aortic aneurysm. METHODS: Full aortic segments were collected from patients undergoing elective repair with Marfan syndrome (n = 5), familial thoracic aortic aneurysm (n = 6), and thoracic aortic aneurysms (n = 9), along with control aortas (n = 5). Immunohistochemistry staining was performed using antibodies directed against markers of lymphocytes and macrophages. Real-time polymerase chain reaction analysis was performed to quantify the expression level of the T-cell receptor beta-chain variable region gene. RESULTS: Immunohistochemistry of thoracic aortic aneurysm aortas demonstrated that the media and adventitia from Marfan syndrome, familial thoracic aortic aneurysm, and sporadic cases had increased numbers of T lymphocytes and macrophages when compared with control aortas. The number of T cells and macrophages in the aortic media of the aneurysm correlated inversely with the patient's age at the time of prophylactic surgical repair of the aorta. T-cell receptor profiling indicated a similar clonal nature of the T cells in the aortic wall in a majority of aneurysms, whether the patient had Marfan syndrome, familial thoracic aortic aneurysm, or sporadic disease. CONCLUSION: These results indicate that the infiltration of inflammatory cells contributes to the pathogenesis of thoracic aortic aneurysms. Superantigen-driven stimulation of T lymphocytes in the aortic tissues of patients with thoracic aortic aneurysms may contribute to the initial immune response.
Resumo:
Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.
Resumo:
We describe a role for diacylglycerol in the activation of Ras and Rap1 at the phagosomal membrane. During phagocytosis, Ras density was similar on the surface and invaginating areas of the membrane, but activation was detectable only in the latter and in sealed phagosomes. Ras activation was associated with the recruitment of RasGRP3, a diacylglycerol-dependent Ras/Rap1 exchange factor. Recruitment to phagosomes of RasGRP3, which contains a C1 domain, parallels and appears to be due to the formation of diacylglycerol. Accordingly, Ras and Rap1 activation was precluded by antagonists of phospholipase C and of diacylglycerol binding. Ras is dispensable for phagocytosis but controls activation of extracellular signal-regulated kinase, which is partially impeded by diacylglycerol inhibitors. By contrast, cross-activation of complement receptors by stimulation of Fcgamma receptors requires Rap1 and involves diacylglycerol. We suggest a role for diacylglycerol-dependent exchange factors in the activation of Ras and Rap1, which govern distinct processes induced by Fcgamma receptor-mediated phagocytosis to enhance the innate immune response.
Resumo:
Citrobacter rodentium is the rodent equivalent of human enteropathogenic Escherichia coli infection. This study investigated regulation of hepatic and renal cytochrome P450 (P450) mRNAs, hepatic P450 proteins, cytokines, and acute phase proteins during C. rodentium infection. Female C3H/HeOuJ (HeOu) and C3H/HeJ (HeJ) mice [which lack functional toll-like receptor 4 (TLR4)] were infected with C. rodentium by oral gavage and sacrificed 6 days later. Hepatic CYP4A10 and 4A14 mRNAs were decreased in HeOu mice (<4% of control). CYP3A11, 2C29, 4F14, and 4F15 mRNAs were reduced to 16 to 55% of control levels, whereas CYP2A5, 4F16, and 4F18 mRNAs were induced (180, 190, and 600% of control, respectively). The pattern of P450 regulation in HeJ mice was similar to that in HeOu mice for most P450s, with the exception of the TLR4 dependence of CYP4F15. Hepatic CYP2C, 3A, and 4A proteins in both groups were decreased, whereas CYP2E protein was not. Renal CYP4A10 and 4A14 mRNAs were significantly down-regulated in HeOu mice, whereas other P450s were unaffected. Most renal P450 mRNAs in infected HeJ mice were increased, notably CYP4A10, 4A14, 4F18, 2A5, and 3A13. Hepatic levels of interleukin (IL)-1beta, IL-6, and tumor necrosis factor alpha (TNFalpha) mRNAs were significantly increased in infected HeOu mice, whereas only TNFalpha mRNA was significantly increased in HeJ mice. Hepatic alpha1-acid glycoprotein was induced in both groups, whereas alpha-fibrinogen and angiotensinogen were unchanged. These data indicate that hepatic inflammation induced by C. rodentium infection is mainly TLR4-independent and suggest that hepatic P450 down-regulation in this model may be cytokine-mediated.
Resumo:
The FsrABC system of Enterococcus faecalis controls the expression of gelatinase and a serine protease via a quorum-sensing mechanism, and recent studies suggest that the Fsr system may also regulate other genes important for virulence. To investigate the possibility that Fsr influences the expression of additional genes, we used transcriptional profiling, with microarrays based on the E. faecalis strain V583 sequence, to compare the E. faecalis strain OG1RF with its isogenic mutant, TX5266, an fsrB deletion mutant. We found that the presence of an intact fsrB influences expression of numerous genes throughout the growth phases tested, namely, late log to early stationary phase. In addition, the Fsr regulon is independent of the activity of the proteases, GelE and SprE, whose expression was confirmed to be activated at all three time points tested. While expression of some genes (i.e., ef1097 and ef0750 to -757, encoding hypothetical proteins) was activated in late log phase in OG1RF versus the fsrB deletion mutant, expression of ef1617 to -1634 (eut-pdu orthologues) was highly repressed by the presence of an intact Fsr at entry into stationary phase. This is the first time that Fsr has been characterized as a negative regulator. The newly recognized Fsr-regulated targets include other factors, besides gelatinase, described as important for biofilms (BopD), and genes predicted to encode the surface proteins EF0750 to -0757 and EF1097, along with proteins implicated in several metabolic pathways, indicating that the FsrABC system may be an important regulator in strain OG1RF, with both positive and negative effects.
Resumo:
Borrelia burgdorferi, the Lyme disease spirochete, dramatically alters its transcriptome and proteome as it cycles between the arthropod vector and mammalian host. During this enzootic cycle, a novel regulatory network, the Rrp2-RpoN-RpoS pathway (also known as the σ(54)-σ(S) sigma factor cascade), plays a central role in modulating the differential expression of more than 10% of all B. burgdorferi genes, including the major virulence genes ospA and ospC. However, the mechanism(s) by which the upstream activator and response regulator Rrp2 is activated remains unclear. Here, we show that none of the histidine kinases present in the B. burgdorferi genome are required for the activation of Rrp2. Instead, we present biochemical and genetic evidence that supports the hypothesis that activation of the Rrp2-RpoN-RpoS pathway occurs via the small, high-energy, phosphoryl-donor acetyl phosphate (acetyl∼P), the intermediate of the Ack-Pta (acetate kinase-phosphate acetyltransferase) pathway that converts acetate to acetyl-CoA. Supplementation of the growth medium with acetate induced activation of the Rrp2-RpoN-RpoS pathway in a dose-dependent manner. Conversely, the overexpression of Pta virtually abolished acetate-induced activation of this pathway, suggesting that acetate works through acetyl∼P. Overexpression of Pta also greatly inhibited temperature and cell density-induced activation of RpoS and OspC, suggesting that these environmental cues affect the Rrp2-RpoN-RpoS pathway by influencing acetyl∼P. Finally, overexpression of Pta partially reduced infectivity of B. burgdorferi in mice. Taken together, these findings suggest that acetyl∼P is one of the key activating molecule for the activation of the Rrp2-RpoN-RpoS pathway and support the emerging concept that acetyl∼P can serve as a global signal in bacterial pathogenesis.
Resumo:
In vivo induced antigen technology (IVIAT) is an immuno-screening technique that identifies bacterial antigens expressed during infection and not during standard in vitro culturing conditions. We applied IVIAT to Bacillus anthracis and identified PagA, seven members of a N-acetylmuramoyl-L-alanine amidase autolysin family, three P60 family lipoproteins, two transporters, spore cortex lytic protein SleB, a penicillin binding protein, a putative prophage holin, respiratory nitrate reductase NarG, and three proteins of unknown function. Using quantitative real-time PCR comparing RNA isolated from in vitro cultured B. anthracis to RNA isolated from BALB/c mice infected with virulent Ames strain B. anthracis, we confirmed induced expression in vivo for a subset of B. anthracis genes identified by IVIAT, including L-alanine amidases BA3767, BA4073, and amiA (pXO2-42); the bacteriophage holin gene BA4074; and pagA (pXO1-110). The exogenous addition of two purified putative autolysins identified by IVIAT, N-acetylmuramoyl-L-alanine amidases BA0485 and BA2446, to vegetative B. anthracis cell suspensions induced a species-specific change in bacterial morphology and reduction in viable bacterial cells. Many of the proteins identified in our screen are predicted to affect peptidoglycan re-modeling, and our results support significant cell wall structural remodeling activity during B. anthracis infection. Identification of L-alanine amidases with B. anthracis specificity may suggest new potential therapeutic targets.
Resumo:
The neutral bis ((pivaloyloxy)methyl) (PIV$\sb2\rbrack$ derivatives of FdUMP, ddUMP, and AZTMP were synthesized as potential membrane-permeable prodrugs of FdUMP, ddUMP, and AZTMP. These compounds were designed to enter cells by passive diffusion and revert to the parent nucleotides after removal of the PIV groups by hydrolytic enzymes. These prodrugs were prepared by condensation of FUdR, ddU, and AZT with PIV$\sb2$ phosphate in the presence of triphenylphosphine and diethyl azodicarboxylate (the Mitsunobo reagent). PIV$\sb2$-FdUMP, PIV$\sb2$-ddUMP, and PIV$\sb2$-AZTMP were stable in the pH range 1.0-4.0 (t$\sb{1/2} = {>}$100 h). They were also fairly stable at pH 7.4 (t$\sb{1/2} = {>}$40 h). In 0.05 M NaOH solution, however, they were rapidly degraded (t$\sb{1/2} < 2$ min). In the presence hog liver carboxylate esterase, they were converted quantitatively to the corresponding phosphodiesters, PIV$\sb1$-FdUMP, PIV$\sb1$-ddUMP, and PIV$\sb1$-AZTMP; after 24 h incubation, only trace amounts of FdUMP, ddUMP, and AZTMP (1-5%) were observed indicating that the PIV$\sb1$ compounds were poor substrates for the enzyme. In human plasma, the PIV$\sb2$ compounds were rapidly degraded with half-lives of less than 5 min. The rate of degradation of the PIV$\sb2$ compounds in the presence of phosphodiesterase I was the same as that in buffer controls, indicating that they were not substrates for this enzyme. In the presence of phosphodiesterase I, PIV$\sb1$-FdUMP, PIV$\sb1$-ddUMP, and PIV$\sb1$-AZTMP were converted quantitatively to FdUMP, ddUMP, and AZTMP.^ PIV$\sb2$-ddUMP and PIV$\sb2$-AZTMP were effective at controlling HIV type 1 infection in MT-4 and CEM tk$\sp-$ cells in culture. Mechanistic studies demonstrated that PIV$\sb2$-ddUMP and PIV$\sb2$-AZTMP were taken up by the cells and converted to ddUTP and AZTTP, both potent inhibitors of HIV reverse transcriptase. However, a potential shortcoming of PIV$\sb2$-ddUMP and PIV$\sb2$-AZTMP as clinical therapeutic agents is that they are rapidly degraded (t$\sb{1/2}$ = approx. 4 minutes) in human plasma by carboxylate esterases. To circumvent this limitation, chemically-labile nucleotide prodrugs and liposome-encapsulated nucleotide prodrugs were investigated. In the former approach, the protective groups bis(N, N-(dimethyl)carbamoyloxymethyl) (DM$\sb2$) and bis (N-(piperidino)carbamoyloxymethyl) (DP$\sb2$) were used to synthesize DM$\sb2$-ddUMP and DP$\sb2$-ddUMP, respectively. In aqueous buffers (pH range 1.0-9.0) these compounds were degraded with half-lives of 3 to 4 h. They had similar half-lives in human plasma demonstrating that they were resistant to esterase-mediated cleavage. However, neither compound gave rise to significant concentrations of ddUMP in CEM or CEM tk$\sp-$ cells. In the liposome-encapsulated nucleotide prodrug approach, three different liposomal formulations of PIV$\sb2$-ddUMP (L-PIV$\sb2$-ddUMP) were investigated. The half-lifes of these L-PIV$\sb2$-ddUMP preparations in human plasma were 2 h compared with 4 min for the free drug. The preparations were more effective at controlling HIV-1 infection than free PIV$\sb2$-ddUMP in human T cells in culture. Collectively, these data indicate that PIV$\sb2$-FdUMP, PIV$\sb2$-ddUMP, and PIV$\sb2$-AZTMP are effective membrane-permeable prodrugs of FdUMP, ddUMP, and AZTMP. ^
Resumo:
PURPOSE: We examined the role of annexins in bladder urothelium. We characterized expression and distribution in normal bladders, biopsies from patients with bladder pain syndrome, cultured human urothelium and urothelial TEU-2 cells. MATERIALS AND METHODS: Annexin expression in bladder layers was analyzed by quantitative reverse transcriptase-polymerase chain reaction and immunofluorescence. We assessed cell survival after exposure to the pore forming bacterial toxin streptolysin O by microscopy and alamarBlue® assay. Bladder dome biopsies were obtained from 8 asymptomatic controls and 28 patients with symptoms of bladder pain syndrome. RESULTS: Annexin A1, A2, A5 and A6 were differentially distributed in bladder layers. Annexin A6 was abundant in detrusor smooth muscle and low in urothelium, while annexin A1 was the highest in urothelium. Annexin A2 was localized to the lateral membrane of umbrella cells but excluded from tight junctions. TEU-2 cell differentiation caused up-regulation of annexin A1 and A2 and down-regulation of annexin A6 mRNA. Mature urothelium dedifferentiation during culture caused the opposite effect, decreasing annexin A1 and increasing annexin A6. Annexin A2 influenced TEU-2 cell epithelial permeability. siRNA mediated knockdown of annexin A1 in TEU-2 cells caused significantly decreased cell survival after streptolysin O exposure. Annexin A1 was significantly reduced in biopsies from patients with bladder pain syndrome. CONCLUSIONS: Several annexins are expressed in human bladder and TEU-2 cells, in which levels are regulated during urothelial differentiation. Annexin A1 down-regulation in patients with bladder pain syndrome might decrease cell survival and contribute to compromised urothelial function.
Resumo:
Two murine leukemia viruses (MuLVs), Rauscher (R-MuLV) and Moloney (Mo-MuLV) MuLVs, were studied to identify the biosynthetic pathways leading to the generation of mature virion proteins. Emphasis was placed on the examination of the clone 1 Mo-MuLV infected cell system.^ At least three genetic loci vital to virion replication exist on the MuLV genome. The 'gag' gene encodes information for the virion core proteins. The 'pol' gene specifies information for the RNA-dependent-DNA-polymerase (pol), or reverse transcriptase (RT). The 'env' gene contains information for the virion envelope proteins.^ MuLV specified proteins were synthesized by way of precursor polyproteins, which were processed to yield mature virion proteins. Pulse-chase kinetic studies, radioimmunoprecipitation, and peptide mapping were the techniques used to identify and characterize the MuLV viral precursor polyproteins and mature virion proteins.^ The 'gag' gene of Mo-MuLV coded for two primary gene products. One 'gag' gene product was found to be a polyprotein of 65,000 daltons M(,r) (Pr65('gag)). Pr65('gag) contained the antigenic and structural determinants of all four viral core proteins--p30, p15, pp12 and p10. Pr65('gag) was the major intracellular precursor polyprotein in the generation of mature viral core proteins. The second 'gag' gene product was a glycosylated gene product (gPr('gag)). An 85,000 dalton M(,r) polyprotein (gPr85('gag)) and an 80,000 dalton M(,r) (gPr80('gag)) polyprotein were the products of the 'gag' genes of Mo-MuLV and R-MuLV, respectively. gPr('gag) contained the antigenic and structural determinants of the four virion core proteins. In addition, gPr('gag) contained peptide information over and above that of Pr65('gag). Pulse-chase kinetic studies in the presence of tunicamycin revealed a separate processing pathway of gPr('gag) that did not seem to involve the generation of mature virion core proteins. Subglycosylated gPr('gag) was found to have a molecular weight of 75,000 daltons (Pr75('gag)) for both Mo-MuLV and R-MuLV.^ The Mo-MuLV 'pol' gene product was initially synthesized as a read-through 'gag-pol' intracellular polyprotein containing both antigenic and structural determinants of both the 'gag' and 'pol' genes. This read-through polyprotein was found to be a closely spaced doublet of two similarly sized proteins at 220-200,000 daltons M(,r) (Pr220/200('gag-pol)). Pulse-chase kinetic studies revealed processing of Pr220/200('gag-pol) to unstable intermediate intracellular proteins of 145,000 (Pr145('pol)), 135,000 (Pr135('pol)), and 125,000 (Pr125('pol)) daltons M(,r). Further chase incubations demonstrated the appearance of an 80,000 dalton M(,r) protein, which represented the mature polymerase (p80('pol)).^ The primary intracellular Mo-MuLV 'env' gene product was found to be a glycosylated polyprotein of 83,000 daltons M(,r) (gPr83('env)). gPr83('env) contained the antigenic and structural determinants of both mature virion envelope proteins, gp70 and p15E. In addition, gPr83('env) contained unique peptide sequences not present in either gp70 or p15E. The subglycosylated form of gPr83('env) had a molecular weight of 62,000 daltons (Pr62('env)).^ Virion core proteins of R-MuLV and Mo-MuLV were examined. Structural homology was observed betwen p30s and p10s. Significant structural non-homology was demonstrated between p15s and pp12s. ^
Resumo:
OBJECTIVE: The presence of minority nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV-1 variants prior to antiretroviral therapy (ART) has been linked to virologic failure in treatment-naive patients. DESIGN: We performed a large retrospective study to determine the number of treatment failures that could have been prevented by implementing minority drug-resistant HIV-1 variant analyses in ART-naïve patients in whom no NNRTI resistance mutations were detected by routine resistance testing. METHODS: Of 1608 patients in the Swiss HIV Cohort Study, who have initiated first-line ART with two nucleoside reverse transcriptase inhibitors (NRTIs) and one NNRTI before July 2008, 519 patients were eligible by means of HIV-1 subtype, viral load and sample availability. Key NNRTI drug resistance mutations K103N and Y181C were measured by allele-specific PCR in 208 of 519 randomly chosen patients. RESULTS: Minority K103N and Y181C drug resistance mutations were detected in five out of 190 (2.6%) and 10 out of 201 (5%) patients, respectively. Focusing on 183 patients for whom virologic success or failure could be examined, virologic failure occurred in seven out of 183 (3.8%) patients; minority K103N and/or Y181C variants were present prior to ART initiation in only two of those patients. The NNRTI-containing, first-line ART was effective in 10 patients with preexisting minority NNRTI-resistant HIV-1 variant. CONCLUSION: As revealed in settings of case-control studies, minority NNRTI-resistant HIV-1 variants can have an impact on ART. However, the sole implementation of minority NNRTI-resistant HIV-1 variant analysis in addition to genotypic resistance testing (GRT) cannot be recommended in routine clinical settings. Additional associated risk factors need to be discovered.
Resumo:
Introduction: HIV-1 viral escape in the cerebrospinal fluid (CSF) despite viral suppression in plasma is rare [1,2]. We describe the case of a 50-year-old HIV-1 infected patient who was diagnosed with HIV-1 in 1995. Antiretroviral therapy (ART) was started in 1998 with a CD4 T cell count of 71 cells/ìL and HIV-viremia of 46,000 copies/mL. ART with zidovudine (AZT), lamivudine (3TC) and efavirenz achieved full viral suppression. After the patient had interrupted ART for two years, treatment was re-introduced with tenofovir (TDF), emtricitabin (FTC) and ritonavir boosted atazanavir (ATVr). This regimen suppressed HIV-1 in plasma for nine years and CD4 cells stabilized around 600 cells/ìL. Since July 2013, the patient complained about severe gait ataxia and decreased concentration. Materials and Methods: Additionally to a neurological examination, two lumbar punctures, a cerebral MRI and a neuropsycological test were performed. HIV-1 viral load in plasma and in CSF was quantified using Cobas TaqMan HIV-1 version 2.0 (Cobas Ampliprep, Roche diagnostic, Basel, Switzerland) with a detection limit of 20 copies/mL. Drug resistance mutations in HIV-1 reverse transcriptase and protease were evaluated using bulk sequencing. Results: The CSF in January 2014 showed a pleocytosis with 75 cells/ìL (100% mononuclear) and 1,184 HIV-1 RNA copies/mL, while HIV-1 in plasma was below 20 copies/mL. The resistance testing of the CSF-HIV-1 RNA showed two NRTI resistance-associated mutations (M184V and K65R) and one NNRTI resistance-associated mutation (K103N). The cerebral MRI showed increased signal on T2-weighted images in the subcortical and periventricular white matter, in the basal ganglia and thalamus. Four months after ART intensification with AZT, 3TC, boosted darunavir and raltegravir, the pleocytosis in CSF cell count normalized to 1 cell/ìL and HIV viral load was suppressed. The neurological symptoms improved; however, equilibrium disturbances and impaired memory persisted. The neuro-psychological evaluation confirmed neurocognitive impairments in executive functions, attention, working and nonverbal memory, speed of information processing, visuospatial abilities and motor skills. Conclusions: HIV-1 infected patients with neurological complaints prompt further investigations of the CSF including measurement of HIV viral load and genotypic resistance testing since isolated replication of HIV with drug resistant variants can rarely occur despite viral suppression in plasma. Optimizing ART by using drugs with improved CNS penetration may achieve viral suppression in CSF with improvement of neurological symptoms.
Resumo:
BACKGROUND Membrane-associated guanylate kinase (MAGUK) proteins are important determinants of ion channel organization in the plasma membrane. In the heart, the MAGUK protein SAP97, encoded by the DLG1 gene, interacts with several ion channels via their PDZ domain-binding motif and regulates their function and localization. OBJECTIVE The purpose of this study was to assess in vivo the role of SAP97 in the heart by generating a genetically modified mouse model in which SAP97 is suppressed exclusively in cardiomyocytes. METHODS SAP97(fl/fl) mice were generated by inserting loxP sequences flanking exons 1-3 of the SAP97 gene. SAP97(fl/fl) mice were crossed with αMHC-Cre mice to generate αMHC-Cre/SAP97(fl/fl) mice, thus resulting in a cardiomyocyte-specific deletion of SAP97. Quantitative reverse transcriptase-polymerase chain reaction, western blots, and immunostaining were performed to measure mRNA and protein expression levels, and ion channel localization. The patch-clamp technique was used to record ion currents and action potentials. Echocardiography and surface ECGs were performed on anesthetized mice. RESULTS Action potential duration was greatly prolonged in αMHC-Cre/SAP97(fl/fl) cardiomyocytes compared to SAP97(fl/fl) controls, but maximal upstroke velocity was unchanged. This was consistent with the decreases observed in IK1, Ito, and IKur potassium currents and the absence of effect on the sodium current INa. Surface ECG revealed an increased corrected QT interval in αMHC-Cre/SAP97(fl/fl) mice. CONCLUSION These data suggest that ablation of SAP97 in the mouse heart mainly alters potassium channel function. Based on the important role of SAP97 in regulating the QT interval, DLG1 may be a susceptibility gene to be investigated in patients with congenital long QT syndrome.