882 resultados para Retinal Vein


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical (Sr, Mg) and isotopic (d18O, 87Sr/86Sr) compositions of calcium carbonate veins (CCV) in the oceanic basement were determined to reconstruct changes in Sr/Ca and Mg/Ca of seawater in the Cenozoic. We examined CCV from ten basement drill sites in the Atlantic and Pacific, ranging in age between 165 and 2.3 Ma. Six of these sites are from cold ridge flanks in basement <46 Ma, which provide direct information about seawater composition. CCV of these young sites were dated, using the Sr isotopic evolution of seawater. For the other sites, temperature-corrections were applied to correct for seawater-basement exchange processes. The combined data show that a period of constant/low Sr/Ca (4.46 - 6.22 mmol/mol) and Mg/Ca (1.12 - 2.03 mol/mol) between 165 and 30 Ma was followed by a steady increase in Mg/Ca ratios by a factor of three to modern ocean composition. Mg/Ca - Sr/Ca relations suggest that variations in hydrothermal fluxes and riverine input are likely causes driving the seawater compositional changes. However, additional forcing may be involved in explaining the timing and magnitude of changes. A plausible scenario is intensified carbonate production due to increased alkalinity input to the oceans from silicate weathering, which in turn is a result of subduction-zone recycling of CO2 from pelagic carbonate formed after the Cretaceous slow-down in ocean crust production rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Esperanza Zn-Pb-Ag vein, owned by Compañía de Minas Buenaventura S.A.A., lies over 4000 to 4650 masl in the Western Cordillera of the Peruvian Central Andes. The Esperanza low sulphidation epithermal vein trends ~E-W along 1500 m; it dips to the South and can be followed to 350 m depth. As other veins of the district, like Teresita and Bienaventurada, it is hosted by intermediate to felsic volcanics (andesitic to dacitic compositions) of the Huachocolpa Group (Middle Miocene to Upper Pliocene). The mineralisation occurs mostly as open space filling related to fracture development during the Quechua III deformational event. Main ore minerals are sphalerite, galena, tetrahedrite, pyrite, chalcopyrite and Ag and Pb sulfosalts; quartz, barite and calcite are the main gangue minerals. Current production grades are ~5% Zn, ~8Oz/t Ag, ~3% Pb; usually very low Cu (mean ~0.04%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se investiga la distribución espacial de contenidos metálicos analizados sobre testigos de sondeos obtenidos en las campañas de exploración de la Veta Pallancata. Se aplica el análisis factorial a dicha distribución y a los cocientes de los valores metálicos, discriminando los que están correlacionados con la mineralización argentífera y que sirven como guías de exploración para hallar zonas de potenciales reservas por sus gradientes de variación.Abstract:The metal distribution in a vein may show the paths of hydrothermal fluid flow at the time of mineralization. Such information may assist for in-fill drilling. The Pallancata Vein has been intersected by 52 drill holes, whose cores were sampled and analysed, and the results plotted to examine the mineralisation trends. The spatial distribution of the ore is observed from the logAg/logPb ratio distribution. Au is in this case closely related to Ag (electrum and uytenbogaardtite, Ag3AuS2 ). The Au grade shows the same spatial distribution as the Ag grade. The logAg/logPb ratio distribution also suggests possible ore to be expected at deeper locations. Shallow supergene Ag enrichment was also observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La tomografía axial computerizada (TAC) es la modalidad de imagen médica preferente para el estudio de enfermedades pulmonares y el análisis de su vasculatura. La segmentación general de vasos en pulmón ha sido abordada en profundidad a lo largo de los últimos años por la comunidad científica que trabaja en el campo de procesamiento de imagen; sin embargo, la diferenciación entre irrigaciones arterial y venosa es aún un problema abierto. De hecho, la separación automática de arterias y venas está considerado como uno de los grandes retos futuros del procesamiento de imágenes biomédicas. La segmentación arteria-vena (AV) permitiría el estudio de ambas irrigaciones por separado, lo cual tendría importantes consecuencias en diferentes escenarios médicos y múltiples enfermedades pulmonares o estados patológicos. Características como la densidad, geometría, topología y tamaño de los vasos sanguíneos podrían ser analizados en enfermedades que conllevan remodelación de la vasculatura pulmonar, haciendo incluso posible el descubrimiento de nuevos biomarcadores específicos que aún hoy en dípermanecen ocultos. Esta diferenciación entre arterias y venas también podría ayudar a la mejora y el desarrollo de métodos de procesamiento de las distintas estructuras pulmonares. Sin embargo, el estudio del efecto de las enfermedades en los árboles arterial y venoso ha sido inviable hasta ahora a pesar de su indudable utilidad. La extrema complejidad de los árboles vasculares del pulmón hace inabordable una separación manual de ambas estructuras en un tiempo realista, fomentando aún más la necesidad de diseñar herramientas automáticas o semiautomáticas para tal objetivo. Pero la ausencia de casos correctamente segmentados y etiquetados conlleva múltiples limitaciones en el desarrollo de sistemas de separación AV, en los cuales son necesarias imágenes de referencia tanto para entrenar como para validar los algoritmos. Por ello, el diseño de imágenes sintéticas de TAC pulmonar podría superar estas dificultades ofreciendo la posibilidad de acceso a una base de datos de casos pseudoreales bajo un entorno restringido y controlado donde cada parte de la imagen (incluyendo arterias y venas) está unívocamente diferenciada. En esta Tesis Doctoral abordamos ambos problemas, los cuales están fuertemente interrelacionados. Primero se describe el diseño de una estrategia para generar, automáticamente, fantomas computacionales de TAC de pulmón en humanos. Partiendo de conocimientos a priori, tanto biológicos como de características de imagen de CT, acerca de la topología y relación entre las distintas estructuras pulmonares, el sistema desarrollado es capaz de generar vías aéreas, arterias y venas pulmonares sintéticas usando métodos de crecimiento iterativo, que posteriormente se unen para formar un pulmón simulado con características realistas. Estos casos sintéticos, junto a imágenes reales de TAC sin contraste, han sido usados en el desarrollo de un método completamente automático de segmentación/separación AV. La estrategia comprende una primera extracción genérica de vasos pulmonares usando partículas espacio-escala, y una posterior clasificación AV de tales partículas mediante el uso de Graph-Cuts (GC) basados en la similitud con arteria o vena (obtenida con algoritmos de aprendizaje automático) y la inclusión de información de conectividad entre partículas. La validación de los fantomas pulmonares se ha llevado a cabo mediante inspección visual y medidas cuantitativas relacionadas con las distribuciones de intensidad, dispersión de estructuras y relación entre arterias y vías aéreas, los cuales muestran una buena correspondencia entre los pulmones reales y los generados sintéticamente. La evaluación del algoritmo de segmentación AV está basada en distintas estrategias de comprobación de la exactitud en la clasificación de vasos, las cuales revelan una adecuada diferenciación entre arterias y venas tanto en los casos reales como en los sintéticos, abriendo así un amplio abanico de posibilidades en el estudio clínico de enfermedades cardiopulmonares y en el desarrollo de metodologías y nuevos algoritmos para el análisis de imágenes pulmonares. ABSTRACT Computed tomography (CT) is the reference image modality for the study of lung diseases and pulmonary vasculature. Lung vessel segmentation has been widely explored by the biomedical image processing community, however, differentiation of arterial from venous irrigations is still an open problem. Indeed, automatic separation of arterial and venous trees has been considered during last years as one of the main future challenges in the field. Artery-Vein (AV) segmentation would be useful in different medical scenarios and multiple pulmonary diseases or pathological states, allowing the study of arterial and venous irrigations separately. Features such as density, geometry, topology and size of vessels could be analyzed in diseases that imply vasculature remodeling, making even possible the discovery of new specific biomarkers that remain hidden nowadays. Differentiation between arteries and veins could also enhance or improve methods processing pulmonary structures. Nevertheless, AV segmentation has been unfeasible until now in clinical routine despite its objective usefulness. The huge complexity of pulmonary vascular trees makes a manual segmentation of both structures unfeasible in realistic time, encouraging the design of automatic or semiautomatic tools to perform the task. However, this lack of proper labeled cases seriously limits in the development of AV segmentation systems, where reference standards are necessary in both algorithm training and validation stages. For that reason, the design of synthetic CT images of the lung could overcome these difficulties by providing a database of pseudorealistic cases in a constrained and controlled scenario where each part of the image (including arteries and veins) is differentiated unequivocally. In this Ph.D. Thesis we address both interrelated problems. First, the design of a complete framework to automatically generate computational CT phantoms of the human lung is described. Starting from biological and imagebased knowledge about the topology and relationships between structures, the system is able to generate synthetic pulmonary arteries, veins, and airways using iterative growth methods that can be merged into a final simulated lung with realistic features. These synthetic cases, together with labeled real CT datasets, have been used as reference for the development of a fully automatic pulmonary AV segmentation/separation method. The approach comprises a vessel extraction stage using scale-space particles and their posterior artery-vein classification using Graph-Cuts (GC) based on arterial/venous similarity scores obtained with a Machine Learning (ML) pre-classification step and particle connectivity information. Validation of pulmonary phantoms from visual examination and quantitative measurements of intensity distributions, dispersion of structures and relationships between pulmonary air and blood flow systems, show good correspondence between real and synthetic lungs. The evaluation of the Artery-Vein (AV) segmentation algorithm, based on different strategies to assess the accuracy of vessel particles classification, reveal accurate differentiation between arteries and vein in both real and synthetic cases that open a huge range of possibilities in the clinical study of cardiopulmonary diseases and the development of methodological approaches for the analysis of pulmonary images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A visual pigment-like protein, referred to as peropsin, has been identified by large-scale sequencing of cDNAs derived from human ocular tissues. The corresponding mRNA was found only in the eye, where it is localized to the retinal pigment epithelium (RPE). Peropsin immunoreactivity, visualized by light and electron microscopy, localizes the protein to the apical face of the RPE, and most prominently to the microvilli that surround the photoreceptor outer segments. These observations suggest that peropsin may play a role in RPE physiology either by detecting light directly or by monitoring the concentration of retinoids or other photoreceptor-derived compounds.