934 resultados para Restricted maximum likelihood


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The factor structure of the Edinburgh Postnatal Depression scale (EPDS) and similar instruments have received little attention in the literature. The researchers set out to investigate the construct validity and reliability of the EPDS amongst impoverished South African women. The EPDS was translated into isiXhosa (using Brislin's back translation method) and administered by trained interviewers to 147 women in Khayelitsha, South Africa. Responses were subjected to maximum likelihood confirmatory factor analysis. A single factor structure was found, consistent with the theory on which the EPDS was based. Internal consistency was satisfactory (a = 0.89).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work the G(A)(0) distribution is assumed as the universal model for amplitude Synthetic Aperture (SAR) imagery data under the Multiplicative Model. The observed data, therefore, is assumed to obey a G(A)(0) (alpha; gamma, n) law, where the parameter n is related to the speckle noise, and (alpha, gamma) are related to the ground truth, giving information about the background. Therefore, maps generated by the estimation of (alpha, gamma) in each coordinate can be used as the input for classification methods. Maximum likelihood estimators are derived and used to form estimated parameter maps. This estimation can be hampered by the presence of corner reflectors, man-made objects used to calibrate SAR images that produce large return values. In order to alleviate this contamination, robust (M) estimators are also derived for the universal model. Gaussian Maximum Likelihood classification is used to obtain maps using hard-to-deal-with simulated data, and the superiority of robust estimation is quantitatively assessed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses the impact of imperfect synchronisation on D-STBC when combined with incremental relay. To suppress such an impact, a novel detection scheme is proposed, which retains the two key features of the STBC principle: simplicity (i.e. linear computational complexity), and optimality (i.e. maximum likelihood). These two features make the new detector very suitable for low power wireless networks (e.g. sensor networks).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A modified radial basis function (RBF) neural network and its identification algorithm based on observational data with heterogeneous noise are introduced. The transformed system output of Box-Cox is represented by the RBF neural network. To identify the model from observational data, the singular value decomposition of the full regression matrix consisting of basis functions formed by system input data is initially carried out and a new fast identification method is then developed using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator (MLE) for a model base spanned by the largest eigenvectors. Finally, the Box-Cox transformation-based RBF neural network, with good generalisation and sparsity, is identified based on the derived optimal Box-Cox transformation and an orthogonal forward regression algorithm using a pseudo-PRESS statistic to select a sparse RBF model with good generalisation. The proposed algorithm and its efficacy are demonstrated with numerical examples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Population size estimation with discrete or nonparametric mixture models is considered, and reliable ways of construction of the nonparametric mixture model estimator are reviewed and set into perspective. Construction of the maximum likelihood estimator of the mixing distribution is done for any number of components up to the global nonparametric maximum likelihood bound using the EM algorithm. In addition, the estimators of Chao and Zelterman are considered with some generalisations of Zelterman’s estimator. All computations are done with CAMCR, a special software developed for population size estimation with mixture models. Several examples and data sets are discussed and the estimators illustrated. Problems using the mixture model-based estimators are highlighted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Bayesian method of estimating multivariate sample selection models is introduced and applied to the estimation of a demand system for food in the UK to account for censoring arising from infrequency of purchase. We show how it is possible to impose identifying restrictions on the sample selection equations and that, unlike a maximum likelihood framework, the imposition of adding up at both latent and observed levels is straightforward. Our results emphasise the role played by low incomes and socio-economic circumstances in leading to poor diets and also indicate that the presence of children in a household has a negative impact on dietary quality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a unique two-stage image restoration framework especially for further application of a novel rectangular poor-pixels detector, which, with properties of miniature size, light weight and low power consumption, has great value in the micro vision system. To meet the demand of fast processing, only a few measured images shifted up to subpixel level are needed to join the fusion operation, fewer than those required in traditional approaches. By maximum likelihood estimation with a least squares method, a preliminary restored image is linearly interpolated. After noise removal via Canny operator based level set evolution, the final high-quality restored image is achieved. Experimental results demonstrate effectiveness of the proposed framework. It is a sensible step towards subsequent image understanding and object identification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article proposes a new model for autoregressive conditional heteroscedasticity and kurtosis. Via a time-varying degrees of freedom parameter, the conditional variance and conditional kurtosis are permitted to evolve separately. The model uses only the standard Student’s t-density and consequently can be estimated simply using maximum likelihood. The method is applied to a set of four daily financial asset return series comprising U.S. and U.K. stocks and bonds, and significant evidence in favor of the presence of autoregressive conditional kurtosis is observed. Various extensions to the basic model are proposed, and we show that the response of kurtosis to good and bad news is not significantly asymmetric.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Patterns of substitution in chloroplast encoded trnL_F regions were compared between species of Actaea (Ranunculales), Digitalis (Scrophulariales), Drosera (Caryophyllales), Panicoideae (Poales), the small chromosome species clade of Pelargonium (Geraniales), each representing a different order of flowering plants, and Huperzia (Lycopodiales). In total, the study included 265 taxa, each with > 900-bp sequences, totaling 0.24 Mb. Both pairwise and phylogeny-based comparisons were used to assess nucleotide substitution patterns. In all six groups, we found that transition/transversion ratios, as estimated by maximum likelihood on most-parsimonious trees, ranged between 0.8 and 1.0 for ingroups. These values occurred both at low sequence divergences, where substitutional saturation, i.e., multiple substitutions having occurred at the same (homologous) nucleotide position, was not expected, and at higher levels of divergence. This suggests that the angiosperm trnL-F regions evolve in a pattern different from that generally observed for nuclear and animal mtDNA (transitional/transversion ratio > or = 2). Transition/transversion ratios in the intron and the spacer region differed in all alignments compared, yet base compositions between the regions were highly similar in all six groups. A>-C transversions were significantly less frequent than the other four substitution types. This correlates with results from studies on fidelity mechanisms in DNA replication that predict A<->T and G<->C transversions to be least likely to occur. It therefore strengthens confidence in the link between mutation bias at the polymerase level and the actual fixation of substitutions as recorded on evolutionary trees, and concomitantly, in the neutrality of nucleotide substitutions as phylogenetic markers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bayesian, maximum-likelihood, and maximum-parsimony phylogenies, constructed using nucleotide sequences from the plastid gene region trnK-matK, are employed to investigate relationships within the Cactaceae. These phylogenies sample 666 plants representing 532 of the 1438 species recognized in the family. All four subfamilies, all nine tribes, and 69% of currently recognized genera of Cactaceae are sampled. We found strong support for three of the four currently recognized subfamilies, although relationships between subfamilies were not well defined. Major clades recovered within the largest subfamilies, Opuntioideae and Cactoideae, are reviewed; only three of the nine currently accepted tribes delimited within these subfamilies, the Cacteae, Rhipsalideae, and Opuntieae, are monophyletic, although the Opuntieae were recovered in only the Bayesian and maximum-likelihood analyses, not in the maximum-parsimony analysis, and more data are needed to reveal the status of the Cylindropuntieae, which may yet be monophyletic. Of the 42 genera with more than one exemplar in our study, only 17 were monophyletic; 14 of these genera were from subfamily Cactoideae and three from subfamily Opuntioideae. We present a synopsis of the status of the currently recognized genera

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This chapter considers the Multiband Orthogonal Frequency Division Multiplexing (MB- OFDM) modulation and demodulation with the intention to optimize the Ultra-Wideband (UWB) system performance. OFDM is a type of multicarrier modulation and becomes the most important aspect for the MB-OFDM system performance. It is also a low cost digital signal component efficiently using Fast Fourier Transform (FFT) algorithm to implement the multicarrier orthogonality. Within the MB-OFDM approach, the OFDM modulation is employed in each 528 MHz wide band to transmit the data across the different bands while also using the frequency hopping technique across different bands. Each parallel bit stream can be mapped onto one of the OFDM subcarriers. Quadrature Phase Shift Keying (QPSK) and Dual Carrier Modulation (DCM) are currently used as the modulation schemes for MB-OFDM in the ECMA-368 defined UWB radio platform. A dual QPSK soft-demapper is suitable for ECMA-368 that exploits the inherent Time-Domain Spreading (TDS) and guard symbol subcarrier diversity to improve the receiver performance, yet merges decoding operations together to minimize hardware and power requirements. There are several methods to demap the DCM, which are soft bit demapping, Maximum Likelihood (ML) soft bit demapping, and Log Likelihood Ratio (LLR) demapping. The Channel State Information (CSI) aided scheme coupled with the band hopping information is used as a further technique to improve the DCM demapping performance. ECMA-368 offers up to 480 Mb/s instantaneous bit rate to the Medium Access Control (MAC) layer, but depending on radio channel conditions dropped packets unfortunately result in a lower throughput. An alternative high data rate modulation scheme termed Dual Circular 32-QAM that fits within the configuration of the current standard increasing system throughput thus maintaining the high rate throughput even with a moderate level of dropped packets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article introduces generalized beta-generated (GBG) distributions. Sub-models include all classical beta-generated, Kumaraswamy-generated and exponentiated distributions. They are maximum entropy distributions under three intuitive conditions, which show that the classical beta generator skewness parameters only control tail entropy and an additional shape parameter is needed to add entropy to the centre of the parent distribution. This parameter controls skewness without necessarily differentiating tail weights. The GBG class also has tractable properties: we present various expansions for moments, generating function and quantiles. The model parameters are estimated by maximum likelihood and the usefulness of the new class is illustrated by means of some real data sets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sub-Saharan Africa in general and Ghana in particular, missed out on the Green revolution. Efforts are being made to re-introduce the revolution, and this calls for more socio-economic research into the factors influencing the adoption of new technologies, hence, this study. The study sought to find out how socio-economic factors contribute to adoption of Green revolution technology in Ghana. The method of analysis involved a maximum likelihood estimation of a probit model. The proportion of Green revolution inputs was found to be greater for the following: households whose heads had formal education, households with higher levels of non-farm income, credit and labor supply as well as those living in urban centers. It is recommended that levels of complementary inputs such as credit, extension services and infrastructure are increased. Also, households must be encouraged to form farmer-groups as an important source of farm labor. Furthermore, the fundamental problems of illiteracy must be addressed through increasing the levels of formal and non-formal education; and the gap between the rural and urban centers must be bridged through infrastructural and rural development. However, care must be taken to ensure that small-scale farmers are not marginalized, in terms of access to these complementary inputs that go with effective adoption of new technology. With these policies well implemented, Ghana can catch up with her Asian counterparts in this re-introduction of the revolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In Sub-Saharan Africa (SSA) the technological advances of the Green Revolution (GR) have not been very successful. However, the efforts being made to re-introduce the revolution call for more socio-economic research into the adoption and the effects of the new technologies. The paper discusses an investigation on the effects of GR technology adoption on poverty among households in Ghana. Maximum likelihood estimation of a poverty model within the framework of Heckman's two stage method of correcting for sample selection was employed. Technology adoption was found to have positive effects in reducing poverty. Other factors that reduce poverty include education, credit, durable assets, living in the forest belt and in the south of the country. Technology adoption itself was also facilitated by education, credit, non-farm income and household labour supply as well as living in urban centres. Inarguably, technology adoption can be taken seriously by increasing the levels of complementary inputs such as credit, extension services and infrastructure. Above all, the fundamental problems of illiteracy, inequality and lack of effective markets must be addressed through increasing the levels of formal and non-formal education, equitable distribution of the 'national cake' and a more pragmatic management of the ongoing Structural Adjustment Programme.