899 resultados para Response surface methodology (RSM)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2013

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power systems have been suffering huge changes mainly due to the substantial increase of distributed generation and to the operation in competitive environments. Virtual power players can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. Resource management gains an increasing relevance in this competitive context, while demand side active role provides managers with increased demand elasticity. This makes demand response use more interesting and flexible, giving rise to a wide range of new opportunities.This paper proposes a methodology for managing demand response programs in the scope of virtual power players. The proposed method is based on the calculation of locational marginal prices (LMP). The evaluation of the impact of using demand response specific programs on the LMP value supports the manager decision concerning demand response use. The proposed method has been computationally implemented and its application is illustrated in this paper using a 32 bus network with intensive use of distributed generation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In competitive electricity markets with deep concerns for the efficiency level, demand response programs gain considerable significance. As demand response levels have decreased after the introduction of competition in the power industry, new approaches are required to take full advantage of demand response opportunities. Grid operators and utilities are taking new initiatives, recognizing the value of demand response for grid reliability and for the enhancement of organized spot markets’ efficiency. This paper proposes a methodology for the selection of the consumers that participate in an event, which is the responsibility of the Portuguese transmission network operator. The proposed method is intended to be applied in the interruptibility service implemented in Portugal, in convergence with Spain, in the context of the Iberian electricity market. This method is based on the calculation of locational marginal prices (LMP) which are used to support the decision concerning the consumers to be schedule for participation. The proposed method has been computationally implemented and its application is illustrated in this paper using a 937 bus distribution network with more than 20,000 consumers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Demand response is assumed an essential resource to fully achieve the smart grids operating benefits, namely in the context of competitive markets. Some advantages of Demand Response (DR) programs and of smart grids can only be achieved through the implementation of Real Time Pricing (RTP). The integration of the expected increasing amounts of distributed energy resources, as well as new players, requires new approaches for the changing operation of power systems. The methodology proposed aims the minimization of the operation costs in a smart grid operated by a virtual power player. It is especially useful when actual and day ahead wind forecast differ significantly. When facing lower wind power generation than expected, RTP is used in order to minimize the impacts of such wind availability change. The proposed model application is here illustrated using the scenario of a special wind availability reduction day in the Portuguese power system (8th February 2012).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In competitive electricity markets with deep concerns at the efficiency level, demand response programs gain considerable significance. In the same way, distributed generation has gained increasing importance in the operation and planning of power systems. Grid operators and utilities are taking new initiatives, recognizing the value of demand response and of distributed generation for grid reliability and for the enhancement of organized spot market´s efficiency. Grid operators and utilities become able to act in both energy and reserve components of electricity markets. This paper proposes a methodology for a joint dispatch of demand response and distributed generation to provide energy and reserve by a virtual power player that operates a distribution network. The proposed method has been computationally implemented and its application is illustrated in this paper using a 32 bus distribution network with 32 medium voltage consumers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years the use of several new resources in power systems, such as distributed generation, demand response and more recently electric vehicles, has significantly increased. Power systems aim at lowering operational costs, requiring an adequate energy resources management. In this context, load consumption management plays an important role, being necessary to use optimization strategies to adjust the consumption to the supply profile. These optimization strategies can be integrated in demand response programs. The control of the energy consumption of an intelligent house has the objective of optimizing the load consumption. This paper presents a genetic algorithm approach to manage the consumption of a residential house making use of a SCADA system developed by the authors. Consumption management is done reducing or curtailing loads to keep the power consumption in, or below, a specified energy consumption limit. This limit is determined according to the consumer strategy and taking into account the renewable based micro generation, energy price, supplier solicitations, and consumers’ preferences. The proposed approach is compared with a mixed integer non-linear approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concept of demand response has a growing importance in the context of the future power systems. Demand response can be seen as a resource like distributed generation, storage, electric vehicles, etc. All these resources require the existence of an infrastructure able to give players the means to operate and use them in an efficient way. This infrastructure implements in practice the smart grid concept, and should accommodate a large number of diverse types of players in the context of a competitive business environment. In this paper, demand response is optimally scheduled jointly with other resources such as distributed generation units and the energy provided by the electricity market, minimizing the operation costs from the point of view of a virtual power player, who manages these resources and supplies the aggregated consumers. The optimal schedule is obtained using two approaches based on particle swarm optimization (with and without mutation) which are compared with a deterministic approach that is used as a reference methodology. A case study with two scenarios implemented in DemSi, a demand Response simulator developed by the authors, evidences the advantages of the use of the proposed particle swarm approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent changes in power systems mainly due to the substantial increase of distributed generation and to the operation in competitive environments has created new challenges to operation and planning. In this context, Virtual Power Players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. Demand response market implementation has been done in recent years. Several implementation models have been considered. An important characteristic of a demand response program is the trigger criterion. A program for which the event trigger depends on the Locational Marginal Price (LMP) used by the New England Independent System operator (ISO-NE) inspired the present paper. This paper proposes a methodology to support VPP demand response programs management. The proposed method has been computationally implemented and its application is illustrated using a 32 bus network with intensive use of distributed generation. Results concerning the evaluation of the impact of using demand response events are also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing importance and influence of new resources connected to the power systems has caused many changes in their operation. Environmental policies and several well know advantages have been made renewable based energy resources largely disseminated. These resources, including Distributed Generation (DG), are being connected to lower voltage levels where Demand Response (DR) must be considered too. These changes increase the complexity of the system operation due to both new operational constraints and amounts of data to be processed. Virtual Power Players (VPP) are entities able to manage these resources. Addressing these issues, this paper proposes a methodology to support VPP actions when these act as a Curtailment Service Provider (CSP) that provides DR capacity to a DR program declared by the Independent System Operator (ISO) or by the VPP itself. The amount of DR capacity that the CSP can assure is determined using data mining techniques applied to a database which is obtained for a large set of operation scenarios. The paper includes a case study based on 27,000 scenarios considering a diversity of distributed resources in a 33 bus distribution network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In competitive electricity markets with deep concerns for the efficiency level, demand response programs gain considerable significance. As demand response levels have decreased after the introduction of competition in the power industry, new approaches are required to take full advantage of demand response opportunities. This paper presents DemSi, a demand response simulator that allows studying demand response actions and schemes in distribution networks. It undertakes the technical validation of the solution using realistic network simulation based on PSCAD. The use of DemSi by a retailer in a situation of energy shortage, is presented. Load reduction is obtained using a consumer based price elasticity approach supported by real time pricing. Non-linear programming is used to maximize the retailer’s profit, determining the optimal solution for each envisaged load reduction. The solution determines the price variations considering two different approaches, price variations determined for each individual consumer or for each consumer type, allowing to prove that the approach used does not significantly influence the retailer’s profit. The paper presents a case study in a 33 bus distribution network with 5 distinct consumer types. The obtained results and conclusions show the adequacy of the used methodology and its importance for supporting retailers’ decision making.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bladder cancer is a common urologic cancer and the majority has origin in the urothelium. Patients with intermediate and high risk of recurrence/progression bladder cancer are treated with intravesical instillation with Bacillus Calmette-Guérin, however, approximately 30% of patients do not respond to treatment. At the moment, there are no accepted biomarkers do predict treatment outcome and an early identification of patients better served by alternative therapeutics. The treatment initiates a cascade of cytokines responsible by recruiting macrophages to the tumor site that have been shown to influence treatment outcome. Effective BCG therapy needs precise activation of the Th1 immune pathway associated with M1 polarized macrophages. However, tumor-associated macrophages (TAMs) often assume an immunoregulatory M2 phenotype, either immunosuppressive or angiogenic, that interfere in different ways with the BCG induced antitumor immune response. The M2 macrophage is influenced by different microenvironments in the stroma and the tumor. In particular, the degree of hypoxia in the tumors is responsible by the recruitment and differentiation of macrophages into the M2 angiogenic phenotype, suggested to be associated with the response to treatment. Nevertheless, neither the macrophage phenotypes present nor the influence of localization and hypoxia have been addressed in previous studies. Therefore, this work devoted to study the influence of TAMs, in particular of the M2 phenotype taking into account their localization (stroma or tumor) and the degree of hypoxia in the tumor (low or high) in BCG treatment outcome. The study included 99 bladder cancer patients treated with BCG. Tumors resected prior to treatment were evaluated using immunohistochemistry for CD68 and CD163 antigens, which identify a lineage macrophage marker and a M2-polarized specific cell surface receptor, respectively. Tumor hypoxia was evaluated based on HIF-1α expression. As a main finding it was observed that a high predominance of CD163+ macrophage counts in the stroma of tumors under low hypoxia was associated with BCG immunotherapy failure, possibly due to its immunosuppressive phenotype. This study further reinforces the importance the tumor microenvironment in the modulation of BCG responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introdução: A organização estrutural e funcional do sistema nervoso face à organização dos diferentes tipos de input, no âmbito da intervenção em fisioterapia, pode potenciar um controlo postural para a regulação do stiffness e com repercussões na marcha e no levantar. Objetivo: Descrever o comportamento do stiffness da tibiotársica no movimento de dorsiflexão, no membro inferior ispi e contralesional, em indivíduos após Acidente Vascular Encefálico, face a uma intervenção em fisioterapia baseada num processo de raciocínio clínico. Pretendeu-se também observar as modificações ocorridas no âmbito da atividade electromiográfica dos flexores plantares, gastrocnémio medial e solear, durante a marcha e o levantar. Métodos: Foi implementado um programa de reabilitação em 4 indivíduos com sequelas de AVE por um período de 3 meses, tendo sido avaliados no momento inicial e final (M0 e M1). O torque e a amplitude articular da tibiotársica foi monitorizada, através do dinamómetro isocinético, durante o movimento passivo de dorsiflexão, e o nível de atividade eletromiográfica registado, através de electomiografia de superfície, no solear e gastrocnémio medial. Foram estudadas as fases de aceitação de carga no STS (fase II) e na marcha (sub-fase II). Resultados: Em todos os indivíduos em estudo verificou-se que o stiffness apresentou uma modificação no sentido da diminuição em todas as amplitudes em M1. O nível de atividade eletromiográfica teve comportamentos diferentes nos vários indivíduos. Conclusão: O stiffness apontou para uma diminuição nos indivíduos em estudo entre M0 e M1. Foram registadas modificações no nível de atividade eletromiográfica sem que seja possível identificar uma tendência clara entre os dois momentos para esta variável.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and massive gridable vehicle (V2G) use is envisaged. This paper presents a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and V2G. The main focus is the comparison of different EV management approaches in the day-ahead energy resources management, namely uncontrolled charging, smart charging, V2G and Demand Response (DR) programs i n the V2G approach. Three different DR programs are designed and tested (trip reduce, shifting reduce and reduce+shifting). Othe r important contribution of the paper is the comparison between deterministic and computational intelligence techniques to reduce the execution time. The proposed scheduling is solved with a modified particle swarm optimization. Mixed integer non-linear programming is also used for comparison purposes. Full ac power flow calculation is included to allow taking into account the network constraints. A case study with a 33-bus distribution network and 2000 V2G resources is used to illustrate the performance of the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The elastic behavior of the demand consumption jointly used with other available resources such as distributed generation (DG) can play a crucial role for the success of smart grids. The intensive use of Distributed Energy Resources (DER) and the technical and contractual constraints result in large-scale non linear optimization problems that require computational intelligence methods to be solved. This paper proposes a Particle Swarm Optimization (PSO) based methodology to support the minimization of the operation costs of a virtual power player that manages the resources in a distribution network and the network itself. Resources include the DER available in the considered time period and the energy that can be bought from external energy suppliers. Network constraints are considered. The proposed approach uses Gaussian mutation of the strategic parameters and contextual self-parameterization of the maximum and minimum particle velocities. The case study considers a real 937 bus distribution network, with 20310 consumers and 548 distributed generators. The obtained solutions are compared with a deterministic approach and with PSO without mutation and Evolutionary PSO, both using self-parameterization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent changes in the operation and planning of power systems have been motivated by the introduction of Distributed Generation (DG) and Demand Response (DR) in the competitive electricity markets' environment, with deep concerns at the efficiency level. In this context, grid operators, market operators, utilities and consumers must adopt strategies and methods to take full advantage of demand response and distributed generation. This requires that all the involved players consider all the market opportunities, as the case of energy and reserve components of electricity markets. The present paper proposes a methodology which considers the joint dispatch of demand response and distributed generation in the context of a distribution network operated by a virtual power player. The resources' participation can be performed in both energy and reserve contexts. This methodology contemplates the probability of actually using the reserve and the distribution network constraints. Its application is illustrated in this paper using a 32-bus distribution network with 66 DG units and 218 consumers classified into 6 types of consumers.