806 resultados para Residential migrations
Resumo:
This paper reports the distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in wash-off in urban stormwater in Gold Coast, Australia. Runoff samples collected from residential, industrial and commercial sites were separated into a dissolved fraction (<0.45µm), and three particulate fractions (0.45-75µm, 75-150µm and >150µm). Patterns in the distribution of PAHs in the fractions were investigated using Principal Component Analysis. Regardless of the land use and particle size fraction characteristics, the presence of organic carbon plays a dominant role in the distribution of PAHs. The PAHs concentrations were also found to decrease with rainfall duration. Generally, the 1- and 2-year average recurrence interval rainfall events were associated with the majority of the PAHs and the wash-off was a source limiting process. In the context of stormwater quality mitigation, targeting the initial part of the rainfall event is the most effective treatment strategy. The implications of the study results for urban stormwater quality management are also discussed.
Resumo:
This paper discusses the outcomes of a research project on nutrients build-up on urban road surfaces. Nutrient build-up was investigated on road sites belonging to residential, industrial and commercial land use. Collected build-up samples were separated into five particle size ranges and were tested for total nitrogen (TN), total phosphorus (TP) and sub species of nutrients, namely, NO2-, NO3-, TKN and PO43-. Multivariate analytical techniques were used to analyse the data and to develop detailed understanding on build-up. Data analysis revealed that the solids loads on urban road surfaces are highly influenced by factors such as land use, antecedent dry period and traffic volume. However, the nutrient build-up process was found to be independent of the type of land use. It was solely dependent on the particle size of solids build-up. Most of the nutrients were associated with the particle size range <150 μm. Therefore, the removal of particles below 150 µm from road surfaces is of importance for the removal of nitrogen and phosphorus from road surface solids build-up. It is also important to consider the differences in the composition of nitrogen and phosphorus build-up in the context of designing effective stormwater quality mitigation strategies.
Resumo:
Background: Most Australians die in institutions and there is evidence to suggest that the care of these patients is not always optimal. Care pathways for the dying have been designed to transfer benchmarked hospice care to other settings (e.g. acute hospitals and residential age-care facilities) by defining goals of best care, providing guidelines to provide that care and documenting outcome. Method: A retrospective audit was undertaken across a network of health-care institutions in Queensland. The 18 goals considered essential for the care of the dying within the Liverpool Care Pathway were taken as a benchmark. Documentation of achievement of each of these goals was sought. Results: The notes of 160 patients who had died in eight institutions (four hospitals, three hospices, one nursing home) were reviewed. Several areas for improvement were identified, particularly in those goals relating to communication, resuscitation orders and care after death. Few units documented the provision of written information to families. Most patients were prescribed medications in anticipation of pain and agitation but less were prescribed drugs for other common symptoms in the dying. Most of the goals were achieved in a higher percentage of cases in hospice units. Marked differences in practice were noted between different institutions. Conclusion: The audit identified several aspects in the care of the terminally ill that could be improved. End-stage pathways may provide a model for improving the care of patients dying in hospitals and institutions in Australia.
Resumo:
Chemical and physical restraints are frequently used in the intensive care unit (ICU) to control agitated patients and to prevent self-harm and unplanned extubations. Published work relating to the numerous issues of the care and treatment strategies for these patients remains conflicting and unclear. Literature regarding sedation and chemical restraint reveals a trend towards management with lighter sedation, use of sedation assessment tools and sedation protocols. It remains unclear which treatment is best for agitated and delirious patients, and the evidence on the effect of sedation is conflicting. A large portion of the literature on the use of physical restraint is from general hospital wards and residential homes, and not from the ICU environment. The purpose of this paper is to provide a summary of the existing literature on the use of physical and chemical restraints in the ICU setting. In Part 1 of this two-part paper, the evidence on chemical and physical restraints is explored with specific focus on definition of terms, unplanned
Resumo:
An important goal of the care for the mechanically ventilated patient is to minimize patient discomfort and anxiety. This is partly achieved by frequent use of chemical and physical restraints. The majority of patients in intensive care will receive some form of sedation. The goal and use of sedation has changed considerably over the past few decades with literature evidencing trends toward overall lighter sedation levels and daily interruption of sedation. Conversely, the use of physical restraint for the ventilated patient in ICU differs considerably between nations and continents. A large portion of the literature on the use of physical restraint is from general hospital wards and residential homes, and not from the ICU environment. Recent literature suggests minimal use of physical restraint in the ICU, and that reduction programmes have been initiated. However, very few papers illuminate the patient's experience of physical and chemical restraints as a treatment strategy. In Part 1 of this two-part review, the evidence on chemical and physical restraints was explored with specific focus on definitions of terms, unplanned extubation, agitation, delirium as well as the impact of nurse–patient ratios in the ICU on these issues. This paper, Part 2, examines the evidence related to chemical and physical restraints from the mechanically ventilated patient's perspective.
Resumo:
Water Sensitive Urban Design (WSUD) systems have the potential mitigate the hydrologic disturbance and water quality concerns associated with stormwater runoff from urban development. In the last few years WSUD has been strongly promoted in South East Queensland (SEQ) and new developments are now required to use WSUD systems to manage stormwater runoff. However, there has been limited field evaluation of WSUD systems in SEQ and consequently knowledge of their effectiveness in the field, under storm events, is limited. The objective of this research project was to assess the effectiveness of WSUD systems installed in a residential development, under real storm events. To achieve this objective, a constructed wetland, bioretention swale and a bioretention basin were evaluated for their ability to improve the hydrologic and water quality characteristics of stormwater runoff from urban development. The monitoring focused on storm events, with sophisticated event monitoring stations measuring the inflow and outflow from WSUD systems. Data analysis undertaken confirmed that the constructed wetland, bioretention basin and bioretention swale improved the hydrologic characteristics by reducing peak flow. The bioretention systems, particularly the bioretention basin also reduced the runoff volume and frequency of flow, meeting key objectives of current urban stormwater management. The pollutant loads were reduced by the WSUD systems to above or just below the regional guidelines, showing significant reductions to TSS (70-85%), TN (40-50%) and TP (50%). The load reduction of NOx and PO4 3- by the bioretention basin was poor (<20%), whilst the constructed wetland effectively reduced the load of these pollutants in the outflow by approximately 90%. The primary reason for the load reduction in the wetland was due to a reduction in concentration in the outflow, showing efficient treatment of stormwater by the system. In contrast, the concentration of key pollutants exiting the bioretention basin were higher than the inflow. However, as the volume of stormwater exiting the bioretention basin was significantly lower than the inflow, a load reduction was still achieved. Calibrated MUSIC modelling showed that the bioretention basin, and in particular, the constructed wetland were undersized, with 34% and 62% of stormwater bypassing the treatment zones in the devices. Over the long term, a large proportion of runoff would not receive treatment, considerably reducing the effectiveness of the WSUD systems.
Resumo:
OneSteel Australian Tube Mills has recently developed a new hollow flange channel cold-formed section, known as the LiteSteel Beam (LSB). The innovative LSB sections have the beneficial characteristics of torsionally rigid closed rectangular flanges combined with economical fabrication processes from a single strip of high strength steel. They combine the stability of hot-rolled steel sections with the high strength to weight ratio of conventional cold-formed steel sections. The LSB sections are commonly used as flexural members in residential, industrial and commercial buildings. In order to ensure safe and efficient designs of LSBs, many research studies have been undertaken on the flexural behaviour of LSBs. However, no research has been undertaken on the shear behaviour of LSBs. Therefore this thesis investigated the ultimate shear strength behaviour of LSBs with and without web openings including their elastic buckling and post-buckling characteristics using both experimental and finite element analyses, and developed accurate shear design rules. Currently the elastic shear buckling coefficients of web panels are determined by assuming conservatively that the web panels are simply supported at the junction between the web and flange elements. Therefore finite element analyses were conducted first to investigate the elastic shear buckling behaviour of LSBs to determine the true support condition at the junction between their web and flange elements. An equation for the higher elastic shear buckling coefficient of LSBs was developed and included in the shear capacity equations in the cold-formed steel structures code, AS/NZS 4600. Predicted shear capacities from the modified equations and the available experimental results demonstrated the improvements to the shear capacities of LSBs due to the presence of higher level of fixity at the LSB flange to web juncture. A detailed study into the shear flow distribution of LSB was also undertaken prior to the elastic buckling analysis study. The experimental study of ten LSB sections included 42 shear tests of LSBs with aspect ratios of 1.0 and 1.5 that were loaded at midspan until failure. Both single and back to back LSB arrangements were used. Test specimens were chosen such that all three types of shear failure (shear yielding, inelastic and elastic shear buckling) occurred in the tests. Experimental results showed that the current cold-formed steel design rules are very conservative for the shear design of LSBs. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Experimental results were presented and compared with corresponding predictions from the current design rules. Appropriate improvements have been proposed for the shear strength of LSBs based on AISI (2007) design equations and test results. Suitable design rules were also developed under the direct strength method (DSM) format. This thesis also includes the shear test results of cold-formed lipped channel beams from LaBoube and Yu (1978a), and the new design rules developed based on them using the same approach used with LSBs. Finite element models of LSBs in shear were also developed to investigate the ultimate shear strength behaviour of LSBs including their elastic and post-buckling characteristics. They were validated by comparing their results with experimental test results. Details of the finite element models of LSBs, the nonlinear analysis results and their comparisons with experimental results are presented in this thesis. Finite element analysis results showed that the current cold-formed steel design rules are very conservative for the shear design of LSBs. They also confirmed other experimental findings relating to elastic and post-buckling shear strength of LSBs. A detailed parametric study based on validated experimental finite element model was undertaken to develop an extensive shear strength data base and was then used to confirm the accuracy of the new shear strength equations proposed in this thesis. Experimental and numerical studies were also undertaken to investigate the shear behaviour of LSBs with web openings. Twenty six shear tests were first undertaken using a three point loading arrangement. It was found that AS/NZS 4600 and Shan et al.'s (1997) design equations are conservative for the shear design of LSBs with web openings while McMahon et al.'s (2008) design equation are unconservative. Experimental finite element models of LSBs with web openings were then developed and validated by comparing their results with experimental test results. The developed nonlinear finite element model was found to predict the shear capacity of LSBs with web opening with very good accuracy. Improved design equations have been proposed for the shear capacity of LSBs with web openings based on both experimental and FEA parametric study results. This thesis presents the details of experimental and numerical studies of the shear behaviour and strength of LSBs with and without web openings and the results including the developed accurate design rules.
Resumo:
The LiteSteel Beam (LSB) is a new hollow flange channel section developed by OneSteel Australian Tube Mills using a patented Dual Electric Resistance Welding technique. The LSB has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. It is commonly used as rafters, floor joists and bearers and roof beams in residential, industrial and commercial buildings. It is on average 40% lighter than traditional hot-rolled steel beams of equivalent performance. The LSB flexural members are subjected to a relatively new Lateral Distortional Buckling mode, which reduces the member moment capacity. Unlike the commonly observed lateral torsional buckling of steel beams, lateral distortional buckling of LSBs is characterised by simultaneous lateral deflection, twist and web distortion. Current member moment capacity design rules for lateral distortional buckling in AS/NZS 4600 (SA, 2005) do not include the effect of section geometry of hollow flange beams although its effect is considered to be important. Therefore detailed experimental and finite element analyses (FEA) were carried out to investigate the lateral distortional buckling behaviour of LSBs including the effect of section geometry. The results showed that the current design rules in AS/NZS 4600 (SA, 2005) are over-conservative in the inelastic lateral buckling region. New improved design rules were therefore developed for LSBs based on both FEA and experimental results. A geometrical parameter (K) defined as the ratio of the flange torsional rigidity to the major axis flexural rigidity of the web (GJf/EIxweb) was identified as the critical parameter affecting the lateral distortional buckling of hollow flange beams. The effect of section geometry was then included in the new design rules using the new parameter (K). The new design rule developed by including this parameter was found to be accurate in calculating the member moment capacities of not only LSBs, but also other types of hollow flange steel beams such as Hollow Flange Beams (HFBs), Monosymmetric Hollow Flange Beams (MHFBs) and Rectangular Hollow Flange Beams (RHFBs). The inelastic reserve bending capacity of LSBs has not been investigated yet although the section moment capacity tests of LSBs in the past revealed that inelastic reserve bending capacity is present in LSBs. However, the Australian and American cold-formed steel design codes limit them to the first yield moment. Therefore both experimental and FEA were carried out to investigate the section moment capacity behaviour of LSBs. A comparison of the section moment capacity results from FEA, experiments and current cold-formed steel design codes showed that compact and non-compact LSB sections classified based on AS 4100 (SA, 1998) have some inelastic reserve capacity while slender LSBs do not have any inelastic reserve capacity beyond their first yield moment. It was found that Shifferaw and Schafer’s (2008) proposed equations and Eurocode 3 Part 1.3 (ECS, 2006) design equations can be used to include the inelastic bending capacities of compact and non-compact LSBs in design. As a simple design approach, the section moment capacity of compact LSB sections can be taken as 1.10 times their first yield moment while it is the first yield moment for non-compact sections. For slender LSB sections, current cold-formed steel codes can be used to predict their section moment capacities. It was believed that the use of transverse web stiffeners could improve the lateral distortional buckling moment capacities of LSBs. However, currently there are no design equations to predict the elastic lateral distortional buckling and member moment capacities of LSBs with web stiffeners under uniform moment conditions. Therefore, a detailed study was conducted using FEA to simulate both experimental and ideal conditions of LSB flexural members. It was shown that the use of 3 to 5 mm steel plate stiffeners welded or screwed to the inner faces of the top and bottom flanges of LSBs at third span points and supports provided an optimum web stiffener arrangement. Suitable design rules were developed to calculate the improved elastic buckling and ultimate moment capacities of LSBs with these optimum web stiffeners. A design rule using the geometrical parameter K was also developed to improve the accuracy of ultimate moment capacity predictions. This thesis presents the details and results of the experimental and numerical studies of the section and member moment capacities of LSBs conducted in this research. It includes the recommendations made regarding the accuracy of current design rules as well as the new design rules for lateral distortional buckling. The new design rules include the effects of section geometry of hollow flange steel beams. This thesis also developed a method of using web stiffeners to reduce the lateral distortional buckling effects, and associated design rules to calculate the improved moment capacities.
Resumo:
Background The purpose of this study was to provide a detailed evaluation of adherence to nutrition supplements by patients with a lower limb fracture. Methods These descriptive data are from 49 nutritionally“ at-risk” patients aged 70+ years admitted to the hospital after a fall-related lower limb fracture and allocated to receive supplementation as part of a randomized, controlled trial. Supplementation commenced on day 7 and continued for 42 days. Prescribed volumes aimed to meet 45% of individually estimated theoretical energy requirements to meet the shortfall between literature estimates of energy intake and requirements. The supplement was administered by nursing staff on medication rounds in the acute or residential care settings and supervised through thrice-weekly home visits postdischarge. Results Median daily percent of the prescribed volume of nutrition supplement consumed averaged over the 42 days was 67% (interquartile range [IQR], 31–89, n = 49). There was no difference in adherence for gender, accommodation, cognition, or whether the supplement was self-administered or supervised. Twenty-three participants took some supplement every day, and a further 12 missed <5 days. For these 35 “nonrefusers,” adherence was 82% (IQR, 65–93), and they lost on average 0.7% (SD, 4.0%) of baseline weight over the 6 weeks of supplementation compared with a loss of 5.5% (SD, 5.4%) in the “refusers” (n = 14, 29%), p = .003. Conclusions We achieved better volume and energy consumption than previous studies of hip fracture patients but still failed to meet target supplement volumes prescribed to meet 45% of theoretical energy requirements. Clinicians should consider alternative methods of feeding such as a nasogastric tube, particularly in those patients where adherence to oral nutrition supplements is poor and dietary intake alone is insufficient to meet estimated energy requirements.
Resumo:
Voltage Unbalance (VU) is a power quality issue arising within the low voltage residential distribution networks due to the random location and rating of single-phase rooftop photovoltaic cells (PVs). In this paper, an analysis has been carried out to investigate how PV installations, their random location and power generation capacity can cause an increase in VU. Several efficient practical methods are discussed for VU reduction. Based on this analysis, it has been shown that the installation of a DSTATCOM can reduce VU. In this paper, the best possible location for DSTATCOM and its efficient control method to reduce VU will be presented. The results are verified through PSCAD/EMTDC and Monte Carlo simulations.
Resumo:
High growth in the uptake of electrical appliances is accounting for a significant increase in electricity consumption globally. In some developed countries, standby energy alone may account for about 10% of residential electricity use. The standby power for many appliances used in Australia is still well above the national goal of 1 W or less. In this paper, field measurements taken of standby power and operating power for a range of electrical appliances are presented. It was found that the difference between minimum value and maximum value of standby power could be quite large, up to 22.13 W for home theatre systems, for example. With the exception of home audio systems, however, the annual operating energy used by most electrical appliances was generally greater than the annual standby energy. Consumer behaviour and product choice can have a significant impact on standby power and operating power, which influences both energy demand and greenhouse gas emissions.
Resumo:
A substantial body of research is focused on understanding the relationships between socio-demographics, land-use characteristics, and mode specific attributes on travel mode choice and time-use patterns. Residential and commercial densities, inter-mixing of land uses, and route directness in conjunction with transportation performance characteristics interact to influence accessibility to destinations as well as time spent traveling and engaging in activities. This study uniquely examines the activity durations undertaken for out-of-home subsistence; maintenance, and discretionary activities. Also examined are total tour durations (summing all activity categories within a tour). Cross-sectional activities are obtained from household activity travel survey data from the Atlanta Metropolitan Region. Time durations allocated to weekdays and weekends are compared. The censoring and endogeneity between activity categories and within individuals are captured using multiple equations Tobit models. The analysis and modeling reveal that land-use characteristics such as net residential density and the number of commercial parcels within a kilometer of a residence are associated with differences in weekday and weekend time-use allocations. Household type and structure are significant predictors across the three activity categories, but not for overall travel times. Tour characteristics such as time-of-day and primary travel mode of the tours also affect traveler's out-of-home activity-tour time-use patterns.
Resumo:
Adherence to medicines is a major determinant of the effectiveness of medicines. However, estimates of non-adherence in the older-aged with chronic conditions vary from 40 to 75%. The problems caused by non-adherence in the older-aged include residential care and hospital admissions, progression of the disease, and increased costs to society. The reasons for non-adherence in the older-aged include items related to the medicine (e.g. cost, number of medicines, adverse effects) and those related to person (e.g. cognition, vision, depression). It is also known that there are many ways adherence can be increased (e.g. use of blister packs, cues). It is assumed that interventions by allied health professions, including a discussion of adherence, will improve adherence to medicines in the older aged but the evidence for this has not been reviewed. There is some evidence that telephone counselling about adherence by a nurse or pharmacist does improve adherence, short- and long-term. However, face-to-face intervention counselling at the pharmacy, or during a home visit by a pharmacist, has shown variable results with some studies showing improved adherence and some not. Education programs during hospital stays have not been shown to improve adherence on discharge, but education programs for subjects with hypertension have been shown to improve adherence. In combination with an education program, both counselling and a medicine review program have been shown to improve adherence short-term in the older-aged. Thus, there are many unanswered questions about the most effective interventions to promote adherence. More studies are needed to determine the most appropriate interventions by allied health professions, and these need to consider the disease state, demographics, and socio-economic status of the older-aged subject, and the intensity and duration of intervention needed.
Resumo:
Burkholderia pseudomallei, the causative agent of melioidosis is associated with soil. This study used a geographic information system (GIS) to determine the spatial distribution of clinical cases of melioidosis in the endemic suburban region of Townsville in Australia. A total of 65 cases over the period 1996–2008 were plotted using residential address. Two distinct groupings were found. One was around the base of a hill in the city centre and the other followed the old course of a major waterway in the region. Both groups (accounting for 43 of the 65 cases examined) are in areas expected to have particularly wet topsoils following intense rainfall, due to soil type or landscape position.
Resumo:
Various countries have been introducing sustainable assessment tools for real estate design to produce integrated sustainability components not just for the building, but also the landscape component of the development. This paper aims to present the comparison between international and local assessment tools of landscape design for housing estate developments in Bangkok Metropolitan Region (BMR), Thailand. The methodologies used are to review, then compare and identify discrepancy indicators among the tools. This paper will examine four international tools; LEED for Neighbourhood Development (LEED – ND) of United State of America (USA), EnviroDevelopment standards of Australia, Residential Landscape Sustainability of United Kingdom (UK) and Green Mark for Infrastructure of Singapore; and three BMR’s existing tools; Land Subdivision Act B.E. 2543, Environmental Impact Assessment Monitoring Awards (EIA-MA) and Thai’s Rating for Energy and Environmental Sustainability of New construction and major renovation (TREES-NC). The findings show that there are twenty two elements of three categories which are neighbourhood design, community management, and environmental condition. Moreover, only one element in neighbourhood designs different between the international and local tools. The sustainable assessment tools have existed in BMR but they are not complete in only one assessment tool. Thus, the development of new comprehensive assessment tool will be necessary in BMR; however, it should meet the specific environment and climate condition for housing estate development at BMR.