936 resultados para Repetitive-element-based PCR assays
Resumo:
ELISA in situ can be used to titrate hepatitis A virus (HAV) particles and real-time polymerase chain reaction (RT-PCR) has been shown to be a fast method to quantify the HAV genome. Precise quantification of viral concentration is necessary to distinguish between infectious and non-infectious particles. The purpose of this study was to compare cell culture and RT-PCR quantification results and determine whether HAV genome quantification can be correlated with infectivity. For this purpose, three stocks of undiluted, five-fold diluted and 10-fold diluted HAV were prepared to inoculate cells in a 96-well plate. Monolayers were then incubated for seven, 10 and 14 days and the correlation between the ELISA in situ and RT-PCR results was evaluated. At 10 days post-incubation, the highest viral load was observed in all stocks of HAV via RT-PCR (10(5) copies/mL) (p = 0.0002), while ELISA revealed the highest quantity of particles after 14 days (optical density = 0.24, p < 0.001). At seven days post-infection, there was a significant statistical correlation between the results of the two methods, indicating equivalents titres of particles and HAV genome during this period of infection. The results reported here indicate that the duration of growth of HAV in cell culture must be taken into account to correlate genome quantification with infectivity.
Resumo:
This study evaluated the relative occurrences of BK virus (BKV) and JC virus (JCV) infections in patients with chronic kidney disease (CKD). Urine samples were analysed from CKD patients and from 99 patients without CKD as a control. A total of 100 urine samples were analysed from the experimental (CKD patients) group and 99 from the control group. Following DNA extraction, polymerase chain reaction (PCR) was used to amplify a 173 bp region of the gene encoding the T antigen of the BKV and JCV. JCV and BKV infections were differentiated based on the enzymatic digestion of the amplified products using BamHI endonuclease. The results indicated that none of the patients in either group was infected with the BKV, whereas 11.1% (11/99) of the control group subjects and 4% (4/100) of the kidney patients were infected with the JCV. High levels of urea in the excreted urine, low urinary cellularity, reduced bladder washout and a delay in analysing the samples may have contributed to the low prevalence of infection. The results indicate that there is a need to increase the sensitivity of assays used to detect viruses in patients with CDK, especially given that polyomavirus infections, especially BKV, can lead to a loss of kidney function following transplantation.
Resumo:
We evaluated the use of a newly described sodC-based real-time-polymerase chain reaction (RT-PCR) assay for detecting Neisseria meningitidis in normally sterile sites, such as cerebrospinal fluid and serum. The sodC-based RT-PCR assay has an advantage over ctrA for detecting nongroupable N. meningitidis isolates, which are commonly present in asymptomatic pharyngeal carriage. However, in our study, sodC-based RT-PCR was 7.5% less sensitive than ctrA. Given the public health impact of possible false-negative results due to the use of the sodC target gene alone, sodC-based RT-PCR for the diagnosis of meningococcal meningitis should be used with caution.
Resumo:
Schistosomiasis diagnosis is based on the detection of eggs in the faeces, which is laborious and lacks sensitivity, especially for patients with a low parasite burden. Immunological assays for specific antibody detection are available, but they usually demonstrate low sensitivity and/or specificity. In this study, two simple immunological assays were evaluated for the detection of soluble Schistosoma mansoni adult worm preparation (SWAP) and egg-specific IgGs. These studies have not yet been evaluated for patients with low parasite burdens. Residents of an endemic area in Brazil donated sera and faecal samples for our study. The patients were initially diagnosed by a rigorous Kato-Katz analysis of 18 thick smears from four different stool samples. The ELISA-SWAP was successful for human diagnosis with 90% sensitivity and specificity, confirming the Kato-Katz diagnosis with nearly perfect agreement, as seen by the Kappa index (0.85). Although the ELISA-soluble S. mansoni egg antigen was 85% sensitive, it exhibited low specificity (80%; Kappa index: 0.75) and was more susceptible to cross-reactivity. We believe that immunological assays should be used in conjunction with Kato-Katz analysis as a supplementary tool for the diagnosis of schistosomiasis for patients with low infection burdens, which are usually hard to detect.
Resumo:
A single polymerase chain reaction (PCR) reaction targeting the spliced-leader intergenic region of Trypanosoma cruzi I was standardised by amplifying a 231 bp fragment in domestic (TcIDOM) strains or clones and 450 and 550 bp fragments in sylvatic strains or clones. This reaction was validated using 44 blind coded samples and 184 non-coded T. cruzi I clones isolated from sylvatic triatomines and the correspondence between the amplified fragments and their domestic or sylvatic origin was determined. Six of the nine strains isolated from acute cases suspected of oral infection had the sylvatic T. cruzi I profile. These results confirmed that the sylvatic T. cruzi I genotype is linked to cases of oral Chagas disease in Colombia. We therefore propose the use of this novel PCR reaction in strains or clones previously characterised as T. cruziI to distinguish TcIDOMfrom sylvatic genotypes in studies of transmission dynamics, including the verification of population selection within hosts or detection of the frequency of mixed infections by both T. cruzi I genotypes in Colombia.
Resumo:
The aim of this study was to evaluate the efficacy of a polymerase chain reaction (PCR)-based method to detect Schistosoma mansoni DNA in stool samples from individuals living in a low-endemicity area in Brazil. Of the 125 initial stool samples, 80 were ELISA reactive and eggs were identified in 19 of the samples by parasitological examination. For the PCR evaluations, 56 stool samples were selected and divided into five groups. Groups I-IV were scored negative for S. mansoni eggs by parasitological examination. Groups I and II were ELISA reactive, whereas Groups III and IV were ELISA nonreactive. Groups II and III were positive for other intestinal parasites. PCR testing scored eight samples as positive from these four groups. Group V represented the S. mansoni -positive group and it included ELISA-reactive samples that were scored positive for S. mansoni by one or more parasitological examinations (6/19 were positive by Kato-Katz method, 9/17 by saline gradient and 10/13 by Helmintex®). PCR scored 13 of these 19 samples as positive for S. mansoni . We conclude that while none of these methods yielded 100% sensitivity, a combination of techniques should be effective for improving the detection of S. mansoni infection in low-endemicity areas.
Resumo:
The polymerase chain reaction (PCR)-based methods for the diagnosis of malaria infection are expected to accurately identify submicroscopic parasite carriers. Although a significant number of PCR protocols have been described, few studies have addressed the performance of PCR amplification in cases of field samples with submicroscopic malaria infection. Here, the reproducibility of two well-established PCR protocols (nested-PCR and real-time PCR for the Plasmodium 18 small subunit rRNA gene) were evaluated in a panel of 34 blood field samples from individuals that are potential reservoirs of malaria infection, but were negative for malaria by optical microscopy. Regardless of the PCR protocol, a large variation between the PCR replicates was observed, leading to alternating positive and negative results in 38% (13 out of 34) of the samples. These findings were quite different from those obtained from the microscopy-positive patients or the unexposed individuals; the diagnosis of these individuals could be confirmed based on the high reproducibility and specificity of the PCR-based protocols. The limitation of PCR amplification was restricted to the field samples with very low levels of parasitaemia because titrations of the DNA templates were able to detect < 3 parasites/µL in the blood. In conclusion, conventional PCR protocols require careful interpretation in cases of submicroscopic malaria infection, as inconsistent and false-negative results can occur.
Resumo:
Background: Both brucellosis and tuberculosis are chronic-debilitating systemic granulomatous diseases with a high incidence in many countries in Africa, Central and South America, the Middle East and the Indian subcontinent. Certain focal complications of brucellosis and extrapulmonary tuberculosis are very difficult to differentiate clinically, biologically and radiologically. As the conventional microbiological methods for the diagnosis of the two diseases have many limitations, as well as being time-consuming, multiplex real time PCR (M RT-PCR) could be a promising and practical approach to hasten the differential diagnosis and improve prognosis. Methodology/Principal Findings: We designed a SYBR Green single-tube multiplex real-time PCR protocol targeting bcsp31 and the IS711 sequence detecting all pathogenic species and biovars of Brucella genus, the IS6110 sequence detecting Mycobacterium genus, and the intergenic region senX3-regX3 specifically detecting Mycobacterium tuberculosis complex. The diagnostic yield of the M RT-PCR with the three pairs of resultant amplicons was then analyzed in 91 clinical samples corresponding to 30 patients with focal complications of brucellosis, 24 patients with extrapulmonary tuberculosis, and 36 patients (Control Group) with different infectious, autoimmune or neoplastic diseases. Thirty-five patients had vertebral osteomyelitis, 21 subacute or chronic meningitis or meningoencephalitis, 13 liver or splenic abscess, eight orchiepididymitis, seven subacute or chronic arthritis, and the remaining seven samples were from different locations. Of the three pairs of amplicons (senX3-regX3+ bcsp3, senX3-regX3+ IS711 and IS6110+ IS711) only senX3-regX3+ IS711 was 100% specific for both the Brucella genus and M. tuberculosis complex. For all the clinical samples studied, the overall sensitivity, specificity, and positive and negative predictive values of the M RT-PCR assay were 89.1%, 100%, 85.7% and 100%, respectively, with an accuracy of 93.4%, (95% CI, 88.3—96.5%). Conclusions/Significance: In this study, a M RT-PCR strategy with species-specific primers based on senX3-regX3+IS711 sequences proved to be a sensitive and specific test, useful for the highly efficient detection of M. tuberculosis and Brucella spp in very different clinical samples. It thus represents an advance in the differential diagnosis between some forms of extrapulmonary tuberculosis and focal complications of brucellosis.
Resumo:
Real-time PCR is a widely used tool for the diagnosis of many infectious diseases. However, little information exists about the influences of the different factors involved in PCR on the amplification efficiency. The aim of this study was to analyze the effect of boiling as the DNA preparation method on the efficiency of the amplification process of real-time PCR for the diagnosis of human brucellosis with serum samples. Serum samples from 10 brucellosis patients were analyzed by a SYBR green I LightCycler-based real-time PCR and by using boiling to obtain the DNA. DNA prepared by boiling lysis of the bacteria isolated from serum did not prevent the presence of inhibitors, such as immunoglobulin G (IgG), which were extracted with the template DNA. To identify and confirm the presence of IgG, serum was precipitated to separate and concentrate the IgG and was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. The use of serum volumes above 0.6 ml completely inhibited the amplification process. The inhibitory effect of IgG in serum samples was not concentration dependent, and it could be eliminated by diluting the samples 1/10 and 1/20 in water. Despite the lack of the complete elimination of the IgG from the template DNA, boiling does not require any special equipment and it provides a rapid, reproducible, and cost-effective method for the preparation of DNA from serum samples for the diagnosis of brucellosis.
Resumo:
The characteristics of tuberculosis (TB) patients related to a chain of recent TB transmissions were investigated. Mycobacterium tuberculosis (MTB) isolates (120) were genotyped using the restriction fragment length polymorphism-IS6110 (R), spacer oligotyping (S) and mycobacterial interspersed repetitive units-variable number of tandem repeats (M) methods. The MTB isolates were clustered and the clusters were grouped according to the similarities of their genotypes. Spearman’s rank correlation coefficients between the groups of MTB isolates with similar genotypes and those patient characteristics indicating a risk for a pulmonary TB (PTB) chain transmission were ana- lysed. The isolates showing similar genotypes were distributed as follows: SMR (5%), SM (12.5%), SR (1.67%), MR (0%), S (46.67%), M (5%) and R (0%). The remaining 35 cases were orphans. SMR exhibited a significant correlation (p < 0.05) with visits to clinics, municipalities and comorbidities (primarily diabetes mellitus). S correlated with drug consumption and M with comorbidities. SMR is needed to identify a social network in metropolitan areas for PTB transmission and S and M are able to detect risk factors as secondary components of a transmission chain of TB.
Resumo:
Human herpesvirus 6 (HHV-6) may cause severe complications after haematopoietic stem cell transplantation (HSCT). Monitoring this virus and providing precise, rapid and early diagnosis of related clinical diseases, constitute essential measures to improve outcomes. A prospective survey on the incidence and clinical features of HHV-6 infections after HSCT has not yet been conducted in Brazilian patients and the impact of this infection on HSCT outcome remains unclear. A rapid test based on real-time quantitative polymerase chain reaction (qPCR) has been optimised to screen and quantify clinical samples for HHV-6. The detection step was based on reaction with TaqMan® hydrolysis probes. A set of previously described primers and probes have been tested to evaluate efficiency, sensitivity and reproducibility. The target efficiency range was 91.4% with linearity ranging from 10-106 copies/reaction and a limit of detection of five copies/reaction or 250 copies/mL of plasma. The qPCR assay developed in the present study was simple, rapid and sensitive, allowing the detection of a wide range of HHV-6 loads. In conclusion, this test may be useful as a practical tool to help elucidate the clinical relevance of HHV-6 infection and reactivation in different scenarios and to determine the need for surveillance.
Resumo:
Most airborne microorganisms are natural components of our ecosystem. Soil, vegetation and animals, including humans, are sources for aerial release of these living or dead cells. In the past, assessment of airborne microorganisms was mainly restricted to occupational health concerns. Indeed, in several occupations, exposure to very high concentrations of non-infectious airborne bacteria and fungi, result in allergenic, toxic or irritant reactions. Recently, the threat of bioterrorism and pandemics have highlighted the urgent need to increase knowledge of bioaerosol ecology. More fundamentally, airborne bacterial and fungal communities begin to draw much more consideration from environmental microbiologists, who have neglected this area for a long time. This increased interest of scientists is to a great part due to the development and use of real-time PCR techniques to identify and quantify airborne microorganisms. Even if the advantages of the PCR technology are obvious, researchers are confronted with new problems. This review describes the methodological state of the art in bioaerosols field and emphasizes the future challenges and perspectives of the real-time PCR-based methods for airborne microorganism studies.
Resumo:
This paper studies cooperation in a political system dominated by two opportunistic parties competing in a resource-based economy. Since a binding agreement as an external solution might be difficult to enforce due to the close association between the incumbent party and the government, the paper explores the extent to which co-operation between political parties that alternate in office can rely on self-enforcing strategies to provide an internal solution. We show that, for appropriate values of the probability of re-election and the discount factor cooperation in maintaining the value of a state variable is possible, but fragile. Another result is that, in such political framework, debt decisions contain an externality element linked to electoral incentives that creates a bias towards excessive borrowing.
Resumo:
Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.
Resumo:
BACKGROUND: Rapid diagnostic tests for malaria (RDTs) allow accurate diagnosis and prompt treatment. Validation of their usefulness in travellers with fever was needed. The safety of a strategy to diagnose falciparum malaria based on RDT followed by immediate or delayed microscopy reading at first attendance was evaluated in one referral hospital in Switzerland. METHODS: A retrospective study was conducted in the outpatient clinic and emergency ward of University Hospital, covering a period of eight years (1999-2007). The study was conducted in the outpatient clinic and emergency ward of University Hospital. All adults suspected of malaria with a diagnostic test performed were included. RDT and microscopy as immediate tests were performed during working hours, and RDT as immediate test and delayed microscopy reading out of laboratory working hours. The main outcome measure was occurrence of specific complications in RDT negative and RDT positive adults. RESULTS: 2,139 patients were recruited. 1987 had both initial RDT and blood smear (BS) result negative. Among those, 2/1987 (0.1%) developed uncomplicated malaria with both RDT and BS positive on day 1 and day 6 respectively. Among the 152 patients initially malaria positive, 137 had both RDT and BS positive, four only BS positive and five only RDT positive (PCR confirmed) (six had only one test performed). None of the four initially RDT negative/BS positive and none of the five initially BS negative/RDT positive developed severe malaria while 6/137 of both RDT and BS positive did so. The use of RDT allowed a reduction of a median of 2.1 hours to get a first malaria test result. CONCLUSIONS: A malaria diagnostic strategy based on RDTs and a delayed BS is safe in non-immune populations, and shortens the time to first malaria test result.