886 resultados para Renewable feedstocks
Resumo:
Global awareness for cleaner and renewable energy is transforming the electricity sector at many levels. New technologies are being increasingly integrated into the electricity grid at high, medium and low voltage levels, new taxes on carbon emissions are being introduced and individuals can now produce electricity, mainly through rooftop photovoltaic (PV) systems. While leading to improvements, these changes also introduce challenges, and a question that often rises is ‘how can we manage this constantly evolving grid?’ The Queensland Government and Ergon Energy, one of the two Queensland distribution companies, have partnered with some Australian and German universities on a project to answer this question in a holistic manner. The project investigates the impact the integration of renewables and other new technologies has on the physical structure of the grid, and how this evolving system can be managed in a sustainable and economical manner. To aid understanding of what the future might bring, a software platform has been developed that integrates two modelling techniques: agent-based modelling (ABM) to capture the characteristics of the different system units accurately and dynamically, and particle swarm optimization (PSO) to find the most economical mix of network extension and integration of distributed generation over long periods of time. Using data from Ergon Energy, two types of networks (3 phase, and Single Wired Earth Return or SWER) have been modelled; three-phase networks are usually used in dense networks such as urban areas, while SWER networks are widely used in rural Queensland. Simulations can be performed on these networks to identify the required upgrades, following a three-step process: a) what is already in place and how it performs under current and future loads, b) what can be done to manage it and plan the future grid and c) how these upgrades/new installations will perform over time. The number of small-scale distributed generators, e.g. PV and battery, is now sufficient (and expected to increase) to impact the operation of the grid, which in turn needs to be considered by the distribution network manager when planning for upgrades and/or installations to stay within regulatory limits. Different scenarios can be simulated, with different levels of distributed generation, in-place as well as expected, so that a large number of options can be assessed (Step a). Once the location, sizing and timing of assets upgrade and/or installation are found using optimisation techniques (Step b), it is possible to assess the adequacy of their daily performance using agent-based modelling (Step c). One distinguishing feature of this software is that it is possible to analyse a whole area at once, while still having a tailored solution for each of the sub-areas. To illustrate this, using the impact of battery and PV can have on the two types of networks mentioned above, three design conditions can be identified (amongst others): · Urban conditions o Feeders that have a low take-up of solar generators, may benefit from adding solar panels o Feeders that need voltage support at specific times, may be assisted by installing batteries · Rural conditions - SWER network o Feeders that need voltage support as well as peak lopping may benefit from both battery and solar panel installations. This small example demonstrates that no single solution can be applied across all three areas, and there is a need to be selective in which one is applied to each branch of the network. This is currently the function of the engineer who can define various scenarios against a configuration, test them and iterate towards an appropriate solution. Future work will focus on increasing the level of automation in identifying areas where particular solutions are applicable.
Resumo:
The Lady Elliot Island eco-resort, on the Great Barrier Reef, operates with a strong sustainability ethic, and has broken away from its reliance on diesel generators, an initiative which has ongoing and substantial economic benefit. The first step was an energy audit that led to a 35% reduction in energy usage, to an average of 575 kWh per day. The eco-resort then commissioned a hybrid solar power station, in 2008, with energy storage in battery banks. Solar power is currently (2013) providing about 160 kWh of energy per day, and the eco-resort’s diesel fuel usage has decreased from 550 to 100 litres per day, enabling the power station to pay for itself in 3 years. The eco-resort plans to complete its transition to renewable energy by 2015, by installing additional solar panels, and a 10-15 kW wind turbine. This paper starts by discussing why the eco-resort chose a hybrid solar power station to transition to renewable energy, and the barriers to change. It then describes the power station, upgrades through to 2013, the power control system, the problems that were solved to realise the potential of a facility operating in a harsh and remote environment, and its performance. The paper concludes by outlining other eco-resort sustainability practices, including education and knowledge-sharing initiatives, and monitoring the island’s environmental and ecological condition.
Resumo:
This research was commissioned by Metecno Pty Ltd, trading as Bondor®. The InsulLiving house was designed and constructed by Bondor®. The house instrumentation (electricity circuits, indoor environment, weather station) was provided by Bondor and supplied and installed by independent contractors. This report contains analysis of data collected from the InsulLiving house at Burpengary during 1 year of occupancy by a family of four for the period 1 April 2012 – 31 March 2013. The data shows a daily average electricity consumption 48% less than the regional average. The analysis confirms that the 9 star house performed thermally slightly better than the simulated performance. The home was 'near zero energy', with its modest 2.1kW solar power system meeting all of the needs for space heating and cooling, lighting and most water heating.
Resumo:
Welcome to this introductory guide on using a systems change model to embed Education for Sustainability (EfS) into teacher education. Pressing sustainability issues such as climate change, biodiversity loss and depletion of non-renewable resources pose new challenges for education. The importance of education in preparing future citizens to engage in sustainable living practices and help create a more sustainable world is widely acknowledged. As a result many universities around the world are beginning to recognize the need to integrate EfS into their teacher education programs. However, evidence indicates that there is little or no core EfS knowledge or pedagogy in pre-service teacher courses available to student teachers in a thorough and systematic fashion. Instead efforts are fragmented and individually or, at best, institutionally-based and lacking a systems approach to change, an approach that is seen as essential to achieving a sustainable society (Henderson & Tilbury, 2004). The result is new teachers are graduating without the necessary knowledge or skills to teach in ways that enable them to prepare their students to cope well with the new and emerging challenges their communities face. This guide has been prepared as part of a teaching and learning research project that applied a systems change approach to embedding the learning and teaching of sustainability into pre-service teacher education. The processes, outcomes and lessons learnt from this project are presented here as a guide for navigating pathways to systemic change in the journey of re-orienting teacher education towards sustainability. The guide also highlights how a systems change approach can be used to successfully enact change within a teacher education system. If you are curious about how to introduce and embed EfS into teacher education – or have tried other models and are looking for a more encompassing, transformative approach – this guide is designed to help you. The material presented in this guide is designed to be flexible and adaptive. However you choose to use the content, our aim is to help you and your students develop new perspectives, promote discussion and to engage with a system-wide approach to change.
Resumo:
Biodiesel, produced from renewable feedstock represents a more sustainable source of energy and will therefore play a significant role in providing the energy requirements for transportation in the near future. Chemically, all biodiesels are fatty acid methyl esters (FAME), produced from raw vegetable oil and animal fat. However, clear differences in chemical structure are apparent from one feedstock to the next in terms of chain length, degree of unsaturation, number of double bonds and double bond configuration-which all determine the fuel properties of biodiesel. In this study, prediction models were developed to estimate kinematic viscosity of biodiesel using an Artificial Neural Network (ANN) modelling technique. While developing the model, 27 parameters based on chemical composition commonly found in biodiesel were used as the input variables and kinematic viscosity of biodiesel was used as output variable. Necessary data to develop and simulate the network were collected from more than 120 published peer reviewed papers. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture and learning algorithm were optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the coefficient of determination (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found high predictive accuracy of the ANN in predicting fuel properties of biodiesel and has demonstrated the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties. Therefore the model developed in this study can be a useful tool to accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.
Resumo:
Wind power is one of the world's major renewable energy sources, and its utilization provides an important contribution in helping solve the energy problems of many countries. After nearly 40 years of development, China's wind power industry now not only manufactures its own massive six MW turbines but also has the largest capacity in the world with a national output of 50 million MW•h in 2010 and set to rise by eight times of that amount by 2020. This paper investigates this development route by analyzing relevant academic literature, statistics, laws and regulations, policies and research and industry reports. The main drivers of the development in the industry are identified as technologies, turbines, wind farm construction, pricing mechanism and government support systems, each of which is also divided into different stages with distinctive features. A systematic review of these aspects provides academics and practitioners with a better understanding of the history of the wind power industry in China and reasons for its rapid development with a view to enhancing progress in wind power development both in China and the world generally.
Resumo:
This paper addresses the voltage rise constraints that are initiated from increased renewable generation resources in low voltage distribution networks. In this paper, an approach which is able to mitigate these voltage rise constraints and allow for increased distributed generator penetration is presented. The proposed approach involves utilizing the distribution transformers static tap changer to reduce the distribution feeder voltage setpoint. The proposed approach is modeled on a generic low voltage distribution network using the PSS SINCAL© simulation software package and is also implemented in a real low voltage distribution network to verify its practicality. Results indicate that this approach can be implemented to mitigate the voltage rise constraint and increase small-scale embedded generator penetration in a high proportion of low voltage feeders while avoiding any substantial network costs.
Resumo:
Voltage rise and drop are the main power quality challenges in Low Voltage (LV) network with Renewable Energy (RE) generators. This paper proposes a new voltage support strategy based on coordination of multiple Distribution Static Synchronous Compensators (DSTATCOMs) using consensus algorithm. The study focuses on LV network with PV as the RE source for customers. The proposed approach applied to a typical residential LV network and its advantages are shown comparing with other voltage control strategies.
Resumo:
Parabolic trough concentrator collector is the most matured, proven and widespread technology for the exploitation of the solar energy on a large scale for middle temperature applications. The assessment of the opportunities and the possibilities of the collector system are relied on its optical performance. A reliable Monte Carlo ray tracing model of a parabolic trough collector is developed by using Zemax software. The optical performance of an ideal collector depends on the solar spectral distribution and the sunshape, and the spectral selectivity of the associated components. Therefore, each step of the model, including the spectral distribution of the solar energy, trough reflectance, glazing anti-reflection coating and the absorber selective coating is explained and verified. Radiation flux distribution around the receiver, and the optical efficiency are two basic aspects of optical simulation are calculated using the model, and verified with widely accepted analytical profile and measured values respectively. Reasonably very good agreement is obtained. Further investigations are carried out to analyse the characteristics of radiation distribution around the receiver tube at different insolation, envelop conditions, and selective coating on the receiver; and the impact of scattered light from the receiver surface on the efficiency. However, the model has the capability to analyse the optical performance at variable sunshape, tracking error, collector imperfections including absorber misalignment with focal line and de-focal effect of the absorber, different rim angles, and geometric concentrations. The current optical model can play a significant role in understanding the optical aspects of a trough collector, and can be employed to extract useful information on the optical performance. In the long run, this optical model will pave the way for the construction of low cost standalone photovoltaic and thermal hybrid collector in Australia for small scale domestic hot water and electricity production.
Resumo:
Installation of domestic rooftop photovoltaic cells (PVs) is increasing due to feed–in tariff and motivation driven by environmental concerns. Even though the increase in the PV installation is gradual, their locations and ratings are often random. Therefore, such single–phase bi–directional power flow caused by the residential customers can have adverse effect on the voltage imbalance of a three–phase distribution network. In this chapter, a voltage imbalance sensitivity analysis and stochastic evaluation are carried out based on the ratings and locations of single–phase grid–connected rooftop PVs in a residential low voltage distribution network. The stochastic evaluation, based on Monte Carlo method, predicts a failure index of non–standard voltage imbalance in the network in presence of PVs. Later, the application of series and parallel custom power devices are investigated to improve voltage imbalance problem in these feeders. In this regard, first, the effectiveness of these two custom power devices is demonstrated vis–à–vis the voltage imbalance reduction in feeders containing rooftop PVs. Their effectiveness is investigated from the installation location and rating points of view. Later, a Monte Carlo based stochastic analysis is utilized to investigate their efficacy for different uncertainties of load and PV rating and location in the network. This is followed by demonstrating the dynamic feasibility and stability issues of applying these devices in the network.
Resumo:
In order to minimize the number of load shedding in a Microgrid during autonomous operation, islanded neighbour microgrids can be interconnected if they are on a self-healing network and an extra generation capacity is available in Distributed Energy Resources (DER) in one of the microgrids. In this way, the total load in the system of interconnected microgrids can be shared by all the DERs within these microgrids. However, for this purpose, carefully designed self-healing and supply restoration control algorithm, protection systems and communication infrastructure are required at the network and microgrid levels. In this chapter, first a hierarchical control structure is discussed for interconnecting the neighbour autonomous microgrids where the introduced primary control level is the main focus. Through the developed primary control level, it demonstrates how the parallel DERs in the system of multiple interconnected autonomous microgrids can properly share the load in the system. This controller is designed such that the converter-interfaced DERs operate in a voltage-controlled mode following a decentralized power sharing algorithm based on droop control. The switching in the converters is controlled using a linear quadratic regulator based state feedback which is more stable than conventional proportional integrator controllers and this prevents instability among parallel DERs when two microgrids are interconnected. The efficacy of the primary control level of DERs in the system of multiple interconnected autonomous microgrids is validated through simulations considering detailed dynamic models of DERs and converters.
Resumo:
There are many attractive alternatives to produce chemicals similar to those currently produced from fossil fuel resources. The most viable renewable resource of fixed carbon is biomass. This paper examines processing conditions for the production and recovery of furanics from bagasse as well as bagasse pulp. It is shown that bio-oil consisting mainly of furanics (~84% chloromethly furfural) may be obtained in yields of ~78% and ~87% by weight from bagasse and bagasse pulp respectively using a biphasic acid hydrolysis system. The biphasic system consists of an organic layer of dichloroethane and an aqueous phase of concentrated hydrochloric acid. Generally the lower the impurity content and the higher the cellulose content, the higher the furanics yield.
Resumo:
Biodiesel derived from microalgae is one of a suite of potential solutions to meet the increasing demand for a renewable, carbon-neutral energy source. However, there are numerous challenges that must be addressed before algae biodiesel can become commercially viable. These challenges include the economic feasibility of harvesting and dewatering the biomass and the extraction of lipids and their conversion into biodiesel. Therefore, it is essential to find a suitable extraction process given these processes presently contribute significantly to the total production costs which, at this stage, inhibit the ability of biodiesel to compete financially with petroleum diesel. This study focuses on pilot-scale (100 kg dried microalgae) solvent extraction of lipids from microalgae and subsequent transesterification to biodiesel. Three different solvents (hexane, isopropanol (IPA) and hexane + IPA (1:1)) were used with two different extraction methods (static and Soxhlet) at bench-scale to find the most suitable solvent extraction process for the pilot-scale. The Soxhlet method extracted only 4.2% more lipid compared to the static method. However, the fatty acid profiles of different extraction methods with different solvents are similar, suggesting that none of the solvents or extraction processes were biased for extraction of particular fatty acids. Considering the cost and availability of the solvents, hexane was chosen for pilot-scale extraction using static extraction. At pilot-scale the lipid yield was found to be 20.3% of total biomass which is 2.5% less than from bench scale. Extracted fatty acids were dominated by polyunsaturated fatty acids (PUFAs) (68.94±0.17%) including 47.7±0.43 and 17.86±0.42% being docosahexaenoic acid (DHA) (C22:6) and docosapentaenoic acid (DPA) (C22:5, ω-3), respectively. These high amounts of long chain poly unsaturated fatty acids are unique to some marine microalgae and protists and vary with environmental conditions, culture age and nutrient status, as well as with cultivation process. Calculated physical and chemical properties of density, viscosity of transesterified fatty acid methyl esters (FAMEs) were within the limits of the biodiesel standard specifications as per ASTM D6751-2012 and EN 14214. The calculated cetane number was, however, significantly lower (17.8~18.6) compared to ASTM D6751-2012 or EN 14214-specified minimal requirements. We conclude that the obtained microalgal biodiesel would likely only be suitable for blending with petroleum diesel to a maximum of 5 to 20%.
Resumo:
Industrial transformer is one of the most critical assets in the power and heavy industry. Failures of transformers can cause enormous losses. The poor joints of the electrical circuit on transformers can cause overheating and results in stress concentration on the structure which is the major cause of catastrophic failure. Few researches have been focused on the mechanical properties of industrial transformers under overheating thermal conditions. In this paper, both mechanical and thermal properties of industrial transformers are jointly investigated using Finite Element Analysis (FEA). Dynamic response analysis is conducted on a modified transformer FEA model, and the computational results are compared with experimental results from literature to validate this simulation model. Based on the FEA model, thermal stress is calculated under different temperature conditions. These analysis results can provide insights to the understanding of the failure of transformers due to overheating, therefore are significant to assess winding fault, especially to the manufacturing and maintenance of large transformers.
Resumo:
Voltage rise is the main issue which limits the capacity of Low Voltage (LV) network to accommodate more Renewable Energy (RE) sources. In addition, voltage drop at peak load period is a significant power quality concern. This paper proposes a new robust voltage support strategy based on distributed coordination of multiple distribution static synchronous compensators (DSTATCOMs). The study focuses on LV networks with PV as the RE source for customers. The proposed approach applied to a typical LV network and its advantages are shown comparing with other voltage control strategies.