996 resultados para Quimica
Resumo:
Corrosion is an important phenomenon that frequently occurs in the oil industry, causing surface ablation, such as it happens on the internal surfaces of oil pipes. This work aims to obtain new systems to reduce this specific problem. The surfactants SDS, CTAB, and UNITOL L90 (in micellar and microemulsionated systems) were used as corrosion inhibitors. The systems were obtained using a C/S ratio of 2, butanol as cosorfactant, kerosene as oil phase and, as water phase, NaCl solutions of 0.5M with pH = 2, 4, and 7. Microemulsion regions were found both for direct and inverse micelles. SDS had the higher microemulsion region and the area was not dependent of pH. The study of micellization of these surfactans in the liquid-gas interface was carried out via the determination of CMC from surface tension measurements. Regarding microemulsionated systems, in the case of CTAB, CMC increased when pH was increased, being constant for SDS and UNITOL L90. Concerning micellar systems, increase in pH caused decrease and increase in CMC for SDC and CTAB, respectively. In the case of UNITOL L90, CMC was practically constant, but increased for pH = 4. The microemulsionated systems presented higher CMC values, except for UNITOL L90 L90. The negative values of free energy of micellization indicated that the process of adsorption was spontaneous. The results also indicated that, comparing microemulsionated to systems, adsorption was less spontaneous in the case of SDS and CTAB, while it did not change for UNITOL L90. SAXS experiments indicated that micelle geometry was spherical, existing also as halter and flat micelles, resuting in a better inght on the adsorption at the liquid-solid interface. Efficiency of corrosion inhibition as determined by electrochemical measurements, from corrosion currents calculated from Tafel extrapolation indicuting heat showed surfactants to be efficient even at low concentrations. Equilibrium isotherm data were fitted to the Freundlich model, indicating that surfactant adsorption occurs in the form of multilayers
Resumo:
The problems of water supply in Northeast Brazil are severe and require more focused studies. This work was intended to assess water quality in the watershed Pirangi, located in the Northeastern state of the newborn using the Water Quality Index, AQI associated with the Index of Toxicity-IT. The data presented in this study were collected in November 2008, June 2009 and March 2010 at eight sampling stations distributed throughout the basin. The study covered nine parameters, based on guidelines established by CETESB, and seven members of Metal Toxicity index-IT. These waters are framed in the classification between GOOD and BAD showing AQI 41.34 minimum and a maximum of 76.23. Virtually all seven metals analyzed were below the detection limits of ICP-OES giving IT a water equal to one when they are absent and 0 when there are levels of trace metals
Resumo:
The aim of this work is the treatment of produced water from oil by using electrochemical technology. Produced water is a major waste generated during the process of exploration and production in the oil industry. Several approaches are being studied aiming at the treatment of this effluent; among them can be cited the biological process and chemical treatments such as advanced oxidation process and electrochemical treatments (electrooxidation, electroflotation, electrocoagulation, electrocoagulation). This work studies the application of electrochemical technology in the treatment of the synthetic produced water effluent through the action of the electron, in order to remove or transform the toxic and harmful substances from the environment by redox reactions in less toxic substances. For this reason, we used a synthetic wastewater, containing a mixture H2SO4 0,5M and 16 HPAs, which are: naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo (a) anthracene, chrysene, benzo(b)fluoranthene, benzo(k) fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a, h)anthracene, benzo(g, h, i)perylene. Bulk electrochemical oxidation experiments were performed using a batch electrochemical reactor containing a pair of parallel electrodes, coupled with a power supply using a magnetic stirrer for favoring the transfer mass control. As anodic material was used, a Dimensionally Stable Anode (DSA) of Ti/Pt, while as cathode was used a Ti electrode. Several samples were collected at specific times and after that, the analysis of these samples were carried out by using Gas Chromatography Coupled to Mass Spectrometry (GC - MS) in order to determine the percentage of removal. The results showed that it was possible to achieve the removal of HPAs about 80% (in some cases, more than 80%). In addition, as an indicator of the economic feasibility of electrochemical treatment the energy consumption was analyzed for each hour of electrolysis, and based on the value kWh charged by ANEEL, the costs were estimated. Thus, the treatment costs of this research were quite attractive
Resumo:
This work makes use of the Pechini process for synthesis of the solutions and the dip-coating process for the addition of zirconium oxide films pure and doped cerium metal substrates. The metals with ceramic substrates were subjected to severe conditions of salinity. The x-ray fluorescence of the substrate showed a great diversity of chemical elements. The x-ray diffraction of the samples showed the phase of iron substrate because the thickness of nano-thin film. Tests using an LPR probe showed that the film presents with zirconia corrosion independent of film thickness. The substrates of ZrO2-doped ceria showed low chemical attack of the salt in films with less than 15 dives. The results imply that ultrathin films are shown in protecting metallic substrates
Resumo:
Polyester fibers are the most used fibers in the world and disperse dyes are used for dyeing these fibers. After dyeing, the colorful dyebath is discharged into effluent streams, which needs a special treatment for color removal. Surfactants interaction with dyes has been evaluated in several studies, including the textile area, specifically in the separation of dyes from textile wastewater. In this work a cationic surfactant was used in a microemulsion system for the extraction of anionic dyes (disperses dyes) from textile wastewater. These microemulsion system was composed by dodecylamonium chloride (surfactant), kerosene oil (organic phase), isoamyl alcohol (cosurfactant) and the wastewater (aqueous phase). The wastewater that results after the dyeing process is acid (pH 5). It was observed that changing the pH value to above 12.8 the extraction could be made, resulting in an aqueous phase with low color level. The Scheffé net experimental design was used for the extraction process optimization, and the obtained results were evaluated using the program "Statistica 7.0". The optimal microemulsion system was composed by 59.8wt.% of wastewater, 30.1wt.% of kerosene, 3.37wt.% of surfactant and 6.73wt.% of cosurfactant, providing extraction upper than 96%. A mix of reactive dyebath (50%) and disperse dyebath (50%) was used as aqueous phase and it presented extraction upper than 98%. The water phase after extraction process can be reused in a new dyeing, being obtained satisfactory results, according to the limits established by textile industry for a good dyeing. Tests were accomplished seeking to study the influence of salt addition and temperature. An experimental design was used for this purpose, which showed that the extraction doesn't depend on those factors. In this way, the removal of color from textile wastewater by microemulsion is a viable technique (that does not depend of external factors such as salinity and temperature), being obtained good extraction results even with in wastewater mixtures
Resumo:
In this work we used chemometric tools to classify and quantify the protein content in samples of milk powder. We applied the NIR diffuse reflectance spectroscopy combined with multivariate techniques. First, we carried out an exploratory method of samples by principal component analysis (PCA), then the classification of independent modeling of class analogy (SIMCA). Thus it became possible to classify the samples that were grouped by similarities in their composition. Finally, the techniques of partial least squares regression (PLS) and principal components regression (PCR) allowed the quantification of protein content in samples of milk powder, compared with the Kjeldahl reference method. A total of 53 samples of milk powder sold in the metropolitan areas of Natal, Salvador and Rio de Janeiro were acquired for analysis, in which after pre-treatment data, there were four models, which were employed for classification and quantification of samples. The methods employed after being assessed and validated showed good performance, good accuracy and reliability of the results, showing that the NIR technique can be a non invasive technique, since it produces no waste and saves time in analyzing the samples
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) constitute a family of compounds characterized by having two or more condensed aromatic rings and for being a class of substances that are widely distributed in the environment as a complex mixture, being very persistent in the environment due to its low solubility in water. The application of chemometric methods to analytical chemistry has provided excellent results in studying the solubility of PAHs in aqueous media in order to understand the mechanisms involved in environmental contamination. The method consists in analyzing the solubilization of PAHs from diesel oil in water varying parameters such as stirring time, volume of oil added and pH, using a full factorial design of two levels and three factors. PAHs were extracted with n-hexane and analyzed by fluorescence spectroscopy because they have molecular characteristics fluorescent due to the large number of condensed rings and links, and gas chromatography coupled to a mass spectrometer (GC-MS). The results of fluorescence analysis showed that only the stirring time and pH influenced the solubility of PAHs in diesel fuel. How is a non-selective technique for the study of fluorescence was performed on form and semi-quantitative. And for the chromatographic analysis the results showed that the solubility of the different PAHs is influenced differently so that you can classify them into groups by the results of the effects
Resumo:
Sweeteners provide a pleasant sensation of sweetness that helps the sensory quality of the human diet, can be divided into natural sweeteners such as fructose, galactose, glucose, lactose and sucrose, and articial sweeteners such as aspartame, cyclamate and saccharin. This work aimed to study the thermal stability of natural and artificial sweeteners in atmospheres of nitrogen and syntetic air using thermogravimetry (TG), derivative thermogravimetry (DTG), Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC). Among the natural sweeteners analyzed showed higher thermal stability for the lactose and sucrose, which showed initial decomposition temperatures near 220 ° C, taking advantage of the lactose has a higher melting point (213 ° C) compared to sucrose (191 ° C). The lower thermal stability was observed for fructose, it has the lowest melting point (122 °C) and the lower initial decomposition temperature (170 °C). Of the artificial sweeteners studied showed higher thermal stability for sodium saccharin, which had the highest melting point (364 ° C) as well as the largest initial decomposition temperature (466 ° C under nitrogen and 435 ° C in air). The lower thermal stability was observed for aspartame, which showed lower initial decomposition temperature (158 ° C under nitrogen and 170 ° C under air). For commercial sweeteners showed higher thermal stability for the sweeteners L and C, which showed initial temperature of thermal decomposition near 220 ° C and melting points near 215 ° C. The lower thermal stability was observed for the sweetener P, which showed initial decomposition temperature at 160 ° C and melting point of 130 °C. Sweeteners B, D, E, I, J, N and O had low thermal stability, with the initial temperature of decomposition starts near 160 °C, probably due to the presence of aspartame, even if they have as the main constituent of the lactose, wich is the most stable of natural sweeteners. According to the results we could also realize that all commercial sweeteners are in its composition by at least a natural sweeteners and are always found in large proportions, and lactose is the main constituent of 60% of the total recorded
Resumo:
The catalytic cracking of triglycerides presents itself as a possible alternative to the production of biofuels with low emission of pollutants. In this work were synthesized the SAPO-5, the catalysts for the cracking reaction of soybean oil is presented. The solids were powder X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG) and infrared spectroscopy (FTIR). The analyses indicated that the synthesis method has employed to obtain materials with high surface area and high acid. The soybean oil thermal and thermal catalytic cracking, realized from the room temperature to 450 ºC in a simple distillation system, has allowed obtaining two liquid fractions, each consisting of two phases, one aqueous and another organic, organic liquid (OL). The OL obtained from first fractions has shown high acid index, even in the thermal catalytic process. The products obtained in the cracking of soybean oil were analyzed by distillation, acid number, infra-red spectroscopy, density, viscosity, carbon residue, cetane number determination and characterization. The analysis of the products obtained in the presence and in the absence of the SAPO-5 permitted to conclude that all the solids tested presented catalytic activity in the deoxygenation of final products only at the second step of the cracking process
Resumo:
Mesoporous molecular sieves of MCM-41 type are considered as promising support for metal in the refining processes of petroleum-based materials as catalysts and adsorbents for environmental protection. In this work, mesoporous molecular sieves MCM-41 were modified with different rare earth ions (La, Eu e Yb) for the obtaining nanostrutured materials with catalytic properties. The catalysts were synthesized by the hydrothermal method at 100oC for 120 h, presenting, all the samples, in the gel of synthesis molar ratio Si/Ln = 50. The obtained materials after calcination at 500oC for 2 h were characterized by XRD, surface area BET, TG/DTG, FTIR, and hydrothermal stability at 700ºC. The XRD analysis of the catalysts indicated that the materials containing rare earth presented characteristic hexagonal structure of the mesoporous materials of the type MCM-41. The TG curves showed that the decomposition of the structural template occurs in the materials at temperatures lower than 500oC. The samples presented variations as the specific superficial area, average diameter of pores and thickness of the silica wall, as a function of the nature of the rare earth impregnated in the mesoporous material. Hydrotermal stability was evaluated through the exposition of the materials to water vapour at 700°C. The thiophene adsorptions reach a maximum at 80% of conversion and incorporation of the rare earths showed influence in the process. Adsorption capacity followed the sequence: Yb-MCM-41 < La-MCM-41 < Eu-MCM-41 < MCM-41
Resumo:
In this work, the treatment of synthetic wastewaters containing Remazol Red BR (RRB) and Novacron Blue C-D (NB) by anodic oxidation using boron doped diamond anodes (BDD) and Novacron Yellow (YN) using BDD and Platinum (Pt) anodes was investigated. Galvanostatic electrolyses of RRB and NB synthetic wastewaters have led to the complete decolorization removal at different operating conditions (current density, pH and temperature). The influence of these parameters was investigated in order to find the best conditions for dyestuff colour removal. According to the experimental results obtained, the electrochemical oxidation process is suitable for decolorizing wastewaters containing these textile dyes, due to the electrocatalytic properties of BDD and Pt anode. Energy requirements for removing colour during galvanostatic electrolyses of RRB, NB and YN synthetic solutions depends mainly on the operating conditions; for example for RRB, it passes from 3.30 kWh m-3 at 20 mA cm-2 to 4.28 kWh m-3 at 60 mA cm-2 (pH = 1); 15.23 kWh m-3 at 20 mA cm-2 to 24.75 kWh m-3 at 60 mA cm-2 (pH = 4.5); 10.80 kWh m-3 at 20 mA cm-2 to 31.5 kWh m-3 at 60 mA cm-2 (pH = 8) (data estimated per volume of treated effluent). In order to verify the Brazilian law regulations of NB and RRB synthetic solutions after electrochemical decolourisation treatment, Hazen Units values were determined and the total colour removal was achieved; remaining into the regulations. Finally, electrical energy cost for removing colour was estimated
Resumo:
In this work, expanded perlite, a mineral clay, consisting of SiO2 and Al2O3 in the proportions of 72.1 and 18.5%, respectively, was used as an adsorbent for oil in its pure expanded form as well as hydrofobized with linseed oil. Thermogravimetry (TG), Derivative Thermogravimetry (DTG) and Differential Thermal Analysis (DTA) were used to study the thermal behavior and quantify the percent adsorption of perlite in differents processes comparing the results with the ones obtained using Gravimetric Analysis. In the process of hydrophobization with linseed oil granulometric fractions > 20, 20-32 and 32-60 mesh were used and adsorption tests with crude oil were performed in triplicate at room temperature. The results obtained by TG/DTG in dynamic atmosphere of air showed mass losses in a single step for the expanded perlite with pure adsorbed oil, indicating that the adsorption of oil was limited and that the particle size did not in this process. Linseed oil has performed well as an agent of hydrophobized perlite (32 to 60 mesh) indicating a maximum percentage of 59.9% and 68.6% the linseed with a fraction range from considering the data obtained by thermogravimetry and Gravimetry, respectively. The adsorption of oil in the expanded perlite and hydrofobized pure perlite with linseed oil did not produce good results, characterizing an increase of 0.5 to 4.6% in pure perlite and 3.3% in hydrofobized perlite with granulometric 32 to 60 mesh
Resumo:
The catalytic processes play a vital role in the worldwide economy, a business that handles about US$ 13 billion per year because the value of products depends on the catalytic processes, including petroleum products, chemicals, pharmaceuticals, synthetic rubbers and plastics, among others. The zeolite ZSM-5 is used as catalyst for various reactions in the area petrochemical, petroleum refining and fine chemicals, especially the reactions of cracking, isomerization, alkylation, aromatization of olefins, among others. Many researchers have studied the hydrothermal synthesis of zeolite ZSM-5 free template and they obtained satisfactory results, so this study aims to evaluate the hydrothermal synthesis and the physicochemical properties of ZSM-5 with the presence and absence of template compared with commercial ZSM-5. The methods for hydrothermal synthesis of zeolite ZSM-5 are of scientific knowledge, providing the chemical composition required for the formation of zeolitic structure in the presence and absence of template. Samples of both zeolites ZSM-5 in protonic form were obtained by heat treatment and ion exchange, according to procedures reported in the literature. The sample of commercial ZSM-5 was acquired by the company Sentex Industrial Ltda. All samples were characterized by XRD, SEM, FTIR, TG / DTG / DSC, N2 adsorption and desorption and study of acidity by thermo-desorption of probe molecule (n-butylamine), in order to understand their physicochemical properties. The efficiency of the methods applied in this work and reported in the literature has been proved by well-defined structure of ZSM-5. According as the evaluation of physicochemical properties, zeolite ZSM-5 free template becomes promising for application in the refining processes or use as catalytic support, since its synthesis reduces environmental impacts and production costs
Resumo:
This study proposes to find a biodiesel through transesterification of rice bran oil with KI/Al2O3 checking the influence of two types of alumina (Amorphous and Crystalline) for conversion into methyl esters. The catalyst was synthesized by the wet impregnation method. Adding 30 mL of 35% KI(aq.) in 10 g of alumina, under stirring at 80 °C for 3 hours. The reaction conditions used in this study were optimized, with a molar ratio methanol:oil of 15:1, 8 h of reaction time and reflux temperature. The catalyst amount was varied in the range of 1 to 5 % wt. The solid catalysts materials were analyzed by: x-ray diffraction (XRD), thermogravimetry (TG), N2 adsorption/desorption, scanning electron microscopy (SEM) and basicity, for the identification of its structure and composition, verifying the presence of basic sites. The results showed that Al2O3(A) presents an amorphous structure, high surface area and a better catalytic activity, in relation to the catalyst synthesized with Al2O3(C) support that proved to have a more crystalline structure, having as well, a lesser surface area, enabling difficulties for the incorporation of active sites. The obtained biodiesel with 5% wt. KI/Al2O3(A) presented physicochemical properties within the standards specified by the Resolution No 7/2008 ANP and obtained the best reaction yield with 95.2%, according to quantitative measurement from the TG, which showed 96.2% conversion into methyl esters. It was furthermore found that with the increasing amount of the quantity of the catalyst in the reaction, there was also an increase in the ester content obtained. The specific mass and the kinematic viscosity were reduced with the increase of the amount of quantity of the catalyst, indicating an increase in the conversion of triglycerides
Resumo:
The proposal of this work is to evaluate the influence of the organic matter on the results of the analyses of the metals (Zn, Pb, Al, Cu, Cr, Fe, Cd e Ni) for Atomic Absorption Spectrometry (AAS), so much in the extraction stage as in the reading using for that the chemometrics. They were used for this study sample of bottom sediment collected in river Jundiaí in the vicinity of the city of Macaíba-RN, commercial humus and water of the station of treatment of sewer of UFRN. Through the analyses accomplished by EAA it was verified that the interference of the organic matter happens in the extraction stage and not in the reading. With relationship to the technique of X Ray Fluorescence Spectrometry (XRFS), the present work has as intended to evaluate the viability of this technique for quantitative analysis of trace metals (Cr, Ni, Cu, Zn, Rb, Sr and Pb) in having leached obtained starting from the extraction with acqua regia for an aqueous solution. The used samples constitute the fine fraction (<0.063 mm) of sediments of swamp of the river Jundiaí. The preparation of tablets pressed starting from the dry residue of those leached it allowed your analysis in the solid form. This preliminary study shows that, in the case of the digestion chemistry partially of the fine fractions of bottom sediments used for environmental studies, the technique of applied EFRX to the analysis of dry residues starting from having leached with acqua regia, compared her it analyzes of the leached with ICP-OES, it presents relative mistakes for Cu, Pb, Sr and Zn below 10%