967 resultados para Pulsating Fluid-flow


Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using an infant rat model of pneumococcal meningitis, we determined whether endothelins contribute to neuronal damage in this disease. Cerebrospinal fluid analysis demonstrated a significant increase of endothelin-1 in infected animals compared with uninfected controls. Histopathological examination 24 hours after infection showed brain damage in animals treated with ceftriaxone alone (median, 9.2% of cortex; range, 0-49.1%). In infected animals treated intraperitoneally with the endothelin antagonist bosentan (30 mg/kg, every 12 hours) also, injury was reduced to 0.5% (range, 0-8.6%) of cortex. Cerebral blood flow was reduced in infected animals (6.5 +/- 4.0 ml/min/100 g of brain vs 14.9 +/- 9.1 ml/min/100 g in controls. Treatment with bosentan restored cerebral blood flow to levels similar to controls (12.8 +/- 5.3 ml/min/100 g). Improved blood flow was not mediated by nitric oxide production, because bosentan had no effect on cerebrospinal fluid or plasma nitrite/nitrate concentrations at 6, 12, or 18 hours. These data indicate that endothelins contribute to neuronal injury in this model of pneumococcal meningitis by causing cerebral ischemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Calorimetry is a nonspecific technique which allows direct measurement of heat generated by biological processes in the living cell. We evaluated the potential of calorimetry for rapid detection of bacterial growth in cerebrospinal fluid (CSF) in a rat model of bacterial meningitis. METHODS: Infant rats were infected on postnatal day 11 by direct intracisternal injection with either Streptococcus pneumoniae, Neisseria meningitidis or Listeria monocytogenes. Control animals were injected with sterile saline or heat-inactivated S. pneumoniae. CSF was obtained at 18 hours after infection for quantitative cultures and heat flow measurement. For calorimetry, 10 microl and 1 microl CSF were inoculated in calorimetry ampoules containing 3 ml trypticase soy broth (TSB). RESULTS: The mean bacterial titer (+/- SD) in CSF was 1.5 +/- 0.6 x 108 for S. pneumoniae, 1.3 +/- 0.3 x 106 for N. meningitidis and 3.5 +/- 2.2 x 104 for L. monocytogenes. Calorimetric detection time was defined as the time until heat flow signal exceeded 10 microW. Heat signal was detected in 10-microl CSF samples from all infected animals with a mean (+/- SD) detection time of 1.5 +/- 0.2 hours for S. pneumoniae, 3.9 +/- 0.7 hours for N. meningitidis and 9.1 +/- 0.5 hours for L. monocytogenes. CSF samples from non-infected animals generated no increasing heat flow (<10 microW). The total heat was the highest in S. pneumoniae ranging from 6.7 to 7.5 Joules, followed by L. monocytogenes (5.6 to 6.1 Joules) and N. meningitidis (3.5 to 4.4 Joules). The lowest detectable bacterial titer by calorimetry was 2 cfu for S. pneumoniae, 4 cfu for N. meningitidis and 7 cfu for L. monocytogenes. CONCLUSION: By means of calorimetry, detection times of <4 hours for S. pneumoniae and N. meningitidis and <10 hours for Listeria monocytogenes using as little as 10 microl CSF were achieved. Calorimetry is a new diagnostic method allowing rapid and accurate diagnosis of bacterial meningitis from a small volume of CSF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE: Insufficient blood flow and oxygenation in the intestinal tract is associated with increased incidence of postoperative complications after bowel surgery. High fluid volume administration may prevent occult regional hypoperfusion and intestinal tissue hypoxia. We tested the hypothesis that high intraoperative fluid volume administration increases intestinal wall tissue oxygen pressure during laparotomy. METHODS: In all, 27 pigs were anaesthetized, ventilated and randomly assigned to one of the three treatment groups (n = 9 in each) receiving low (3 mL kg-1 h-1), medium (7 mL kg-1 h-1) or high (20 mL kg-1 h-1) fluid volume treatment with lactated Ringer's solution. All animals received 30% and 100% inspired oxygen in random order. Cardiac index was measured with thermodilution and tissue oxygen pressure with a micro-oximetry system in the jejunum and colon wall and subcutaneous tissue. RESULTS: Groups receiving low and medium fluid volume treatment had similar systemic haemodynamics. The high fluid volume group had significantly higher mean arterial pressure, cardiac index and subcutaneous tissue oxygenation. Tissue oxygen pressures in the jejunum and colon were comparable in all three groups. CONCLUSIONS: The three different fluid volume regimens tested did not affect tissue oxygen pressure in the jejunum and colon, suggesting efficient autoregulation of intestinal blood flow in healthy subjects undergoing uncomplicated abdominal surgery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goals of the present study were to model the population kinetics of in vivo influx and efflux processes of grepafloxacin at the serum-cerebrospinal fluid (CSF) barrier and to propose a simulation-based approach to optimize the design of dose-finding trials in the meningitis rabbit model. Twenty-nine rabbits with pneumococcal meningitis receiving grepafloxacin at 15 mg/kg of body weight (intravenous administration at 0 h), 30 mg/kg (at 0 h), or 50 mg/kg twice (at 0 and 4 h) were studied. A three-compartment population pharmacokinetic model was fit to the data with the program NONMEM (Nonlinear Mixed Effects Modeling). Passive diffusion clearance (CL(diff)) and active efflux clearance (CL(active)) are transfer kinetic modeling parameters. Influx clearance is assumed to be equal to CL(diff), and efflux clearance is the sum of CL(diff), CL(active), and bulk flow clearance (CL(bulk)). The average influx clearance for the population was 0.0055 ml/min (interindividual variability, 17%). Passive diffusion clearance was greater in rabbits receiving grepafloxacin at 15 mg/kg than in those treated with higher doses (0.0088 versus 0.0034 ml/min). Assuming a CL(bulk) of 0.01 ml/min, CL(active) was estimated to be 0.017 ml/min (11%), and clearance by total efflux was estimated to be 0.032 ml/min. The population kinetic model allows not only to quantify in vivo efflux and influx mechanisms at the serum-CSF barrier but also to analyze the effects of different dose regimens on transfer kinetic parameters in the rabbit meningitis model. The modeling-based approach also provides a tool for the simulation and prediction of various outcomes in which researchers might be interested, which is of great potential in designing dose-finding trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Perioperative hypovolemia arises frequently and contributes to intestinal hypoperfusion and subsequent postoperative complications. Goal-directed fluid therapy might reduce these complications. The aim of this study was to compare the effects of goal-directed administration of crystalloids and colloids on the distribution of systemic, hepatosplanchnic, and microcirculatory (small intestine) blood flow after major abdominal surgery in a clinically relevant pig model. METHODS: Twenty-seven pigs were anesthetized and mechanically ventilated and underwent open laparotomy. They were randomly assigned to one of three treatment groups: the restricted Ringer lactate (R-RL) group (n = 9) received 3 mL/kg per hour of RL, the goal-directed RL (GD-RL) group (n = 9) received 3 mL/kg per hour of RL and intermittent boluses of 250 mL of RL, and the goal-directed colloid (GD-C) group (n = 9) received 3 mL/kg per hour of RL and boluses of 250 mL of 6% hydroxyethyl starch (130/0.4). The latter two groups received a bolus infusion when mixed venous oxygen saturation was below 60% ('lockout' time of 30 minutes). Regional blood flow was measured in the superior mesenteric artery and the celiac trunk. In the small bowel, microcirculatory blood flow was measured using laser Doppler flowmetry. Intestinal tissue oxygen tension was measured with intramural Clark-type electrodes. RESULTS: After 4 hours of treatment, arterial blood pressure, cardiac output, mesenteric artery flow, and mixed oxygen saturation were significantly higher in the GD-C and GD-RL groups than in the R-RL group. Microcirculatory flow in the intestinal mucosa increased by 50% in the GD-C group but remained unchanged in the other two groups. Likewise, tissue oxygen tension in the intestine increased by 30% in the GD-C group but remained unchanged in the GD-RL group and decreased by 18% in the R-RL group. Mesenteric venous glucose concentrations were higher and lactate levels were lower in the GD-C group compared with the two crystalloid groups. CONCLUSIONS: Goal-directed colloid administration markedly increased microcirculatory blood flow in the small intestine and intestinal tissue oxygen tension after abdominal surgery. In contrast, goal-directed crystalloid and restricted crystalloid administrations had no such effects. Additionally, mesenteric venous glucose and lactate concentrations suggest that intestinal cellular substrate levels were higher in the colloid-treated than in the crystalloid-treated animals. These results support the notion that perioperative goal-directed therapy with colloids might be beneficial during major abdominal surgery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Onondaga Lake has received the municipal effluent and industrial waste from the city of Syracuse for more than a century. Historically, 75 metric tons of mercury were discharged to the lake by chlor-alkali facilities. These legacy deposits of mercury now exist primarily in the lake sediments. Under anoxic conditions, methylmercury is produced in the sediments and can be released to the overlying water. Natural sedimentation processes are continuously burying the mercury deeper into the sediments. Eventually, the mercury will be buried to a depth where it no longer has an impact on the overlying water. In the interim, electron acceptor amendment systems can be installed to retard these chemical releases while the lake naturally recovers. Electron acceptor amendment systems are designed to meet the sediment oxygen demand in the sediment and maintain manageable hypolimnion oxygen concentrations. Historically, designs of these systems have been under designed resulting in failure. This stems from a mischaracterization of the sediment oxygen demand. Turbulence at the sediment water interface has been shown to impact sediment oxygen demand. The turbulence introduced by the electron amendment system can thus increase the sediment oxygen demand, resulting in system failure if turbulence is not factored into the design. Sediment cores were gathered and operated to steady state under several well characterized turbulence conditions. The relationship between sediment oxygen/nitrate demand and turbulence was then quantified and plotted. A maximum demand was exhibited at or above a fluid velocity of 2.0 mm•s-1. Below this velocity, demand decreased rapidly with fluid velocity as zero velocity was approached. Similar relationships were displayed by both oxygen and nitrate cores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water-saturated debris flows are among some of the most destructive mass movements. Their complex nature presents a challenge for quantitative description and modeling. In order to improve understanding of the dynamics of these flows, it is important to seek a simplified dynamic system underlying their behavior. Models currently in use to describe the motion of debris flows employ depth-averaged equations of motion, typically assuming negligible effects from vertical acceleration. However, in many cases debris flows experience significant vertical acceleration as they move across irregular surfaces, and it has been proposed that friction associated with vertical forces and liquefaction merit inclusion in any comprehensive mechanical model. The intent of this work is to determine the effect of vertical acceleration through a series of laboratory experiments designed to simulate debris flows, testing a recent model for debris flows experimentally. In the experiments, a mass of water-saturated sediment is released suddenly from a holding container, and parameters including rate of collapse, pore-fluid pressure, and bed load are monitored. Experiments are simplified to axial geometry so that variables act solely in the vertical dimension. Steady state equations to infer motion of the moving sediment mass are not sufficient to model accurately the independent solid and fluid constituents in these experiments. The model developed in this work more accurately predicts the bed-normal stress of a saturated sediment mass in motion and illustrates the importance of acceleration and deceleration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assessment of regional blood flow changes is difficult in the clinical setting. We tested whether conventional pulmonary artery catheters (PACs) can be used to measure regional venous blood flows by inverse thermodilution (ITD). Inverse thermodilution was tested in vitro and in vivo using perivascular ultrasound Doppler (USD) flow probes as a reference. In anesthetized pigs, PACs were inserted in jugular, hepatic, renal, and femoral veins, and their measurements were compared with simultaneous USD flow measurements from carotid, hepatic, renal, and femoral arteries and from portal vein. Fluid boluses were injected through the PAC's distal port, and temperature changes were recorded from the proximally located thermistor. Injectates of 2 and 5 mL at 22 degrees C and 4 degrees C were used. Flows were altered by using a roller pump (in vitro), and infusion of dobutamine and induction of cardiac tamponade, respectively. In vitro: At blood flows between 400 mL . min-1 and 700 mL . min-1 (n = 50), ITD and USD correlated well (r = 0.86, P < 0.0001), with bias and limits of agreement of 3 +/- 101 mL . min-1. In vivo: 514 pairs of measurements had to be excluded from analysis for technical reasons, and 976 were analyzed. Best correlations were r = 0.87 (P < 0.0001) for renal flow and r = 0.46 (P < 0.0001) for hepatic flow. No significant correlation was found for cerebral and femoral flows. Inverse thermodilution using conventional PAC compared moderately well with USD for renal but not for other flows despite good in vitro correlation in various conditions. In addition, this method has significant technical limitations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research initiative was triggered by the problems of water management of Polymer Electrolyte Membrane Fuel Cell (PEMFC). In low temperature fuel cells such as PEMFC, some of the water produced after the chemical reaction remains in its liquid state. Excess water produced by the fuel cell must be removed from the system to avoid flooding of the gas diffusion layers (GDL). The GDL is responsible for the transport of reactant gas to the active sites and remove the water produced from the sites. If the GDL is flooded, the supply gas will not be able to reach the reactive sites and the fuel cell fails. The choice of water removal method in this research is to exert a variable asymmetrical force on a liquid droplet. As the drop of liquid is subjected to an external vibrational force in the form of periodic wave, it will begin to oscillate. A fluidic oscillator is capable to produce a pulsating flow using simple balance of momentum fluxes between three impinging jets. By connecting the outputs of the oscillator to the gas channels of a fuel cell, a flow pulsation can be imposed on a water droplet formed within the gas channel during fuel cell operation. The lowest frequency produced by this design is approximately 202 Hz when a 20 inches feed-back port length was used and a supply pressure of 5 psig was introduced. This information was found by setting up a fluidic network with appropriate data acquisition. The components include a fluidic amplifier, valves and fittings, flow meters, a pressure gage, NI-DAQ system, Siglab®, Matlab software and four PCB microphones. The operating environment of the water droplet was reviewed, speed of the sound pressure which travels down the square channel was precisely estimated, and measurement devices were carefully selected. Applicable alternative measurement devices and its application to pressure wave measurement was considered. Methods for experimental setup and possible approaches were recommended, with some discussion of potential problems with implementation of this technique. Some computational fluid dynamic was also performed as an approach to oscillator design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary goal of this project is to demonstrate the practical use of data mining algorithms to cluster a solved steady-state computational fluids simulation (CFD) flow domain into a simplified lumped-parameter network. A commercial-quality code, “cfdMine” was created using a volume-weighted k-means clustering that that can accomplish the clustering of a 20 million cell CFD domain on a single CPU in several hours or less. Additionally agglomeration and k-means Mahalanobis were added as optional post-processing steps to further enhance the separation of the clusters. The resultant nodal network is considered a reduced-order model and can be solved transiently at a very minimal computational cost. The reduced order network is then instantiated in the commercial thermal solver MuSES to perform transient conjugate heat transfer using convection predicted using a lumped network (based on steady-state CFD). When inserting the lumped nodal network into a MuSES model, the potential for developing a “localized heat transfer coefficient” is shown to be an improvement over existing techniques. Also, it was found that the use of the clustering created a new flow visualization technique. Finally, fixing clusters near equipment newly demonstrates a capability to track temperatures near specific objects (such as equipment in vehicles).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lymphedema is a disease characterized by swelling resulting from the accumulation of fluid in the extracellular matrix (ECM) of the skin. In order to alleviate this swelling, the authors sought to selectively degrade certain hydrophilic molecules in the ECM called glycosaminoglycans (GAGs). GAGs are long unbranched sugar molecules present in the ECM that attract water to their numerous negative charges. The authors hypothesized that the density of GAGs would increase in lymphedema and inhibit fluid from leaving the tissue. An existing mouse tail model of experimental lymphedema that reproduced important features of the human condition was used to evaluate GAG content in swollen tissue. In this model, a surgical excision of tissue was made circumferentially around the tail that caused swelling distal to the wound site. Tissue distal to the wound site was analyzed via two assays; one that measured hyaluronan (an unsulfated GAG) and another that measured sulfated GAGs (including Dermatan Sulfate and Chondroitin Sulfate), at various timepoints post surgical intervention. Hyaluronan (HA) levels were significantly higher than control (tissues with no surgical intervention) by day 5 (p

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dissipation of high heat flux from integrated circuit chips and the maintenance of acceptable junction temperatures in high powered electronics require advanced cooling technologies. One such technology is two-phase cooling in microchannels under confined flow boiling conditions. In macroscale flow boiling bubbles will nucleate on the channel walls, grow, and depart from the surface. In microscale flow boiling bubbles can fill the channel diameter before the liquid drag force has a chance to sweep them off the channel wall. As a confined bubble elongates in a microchannel, it traps thin liquid films between the heated wall and the vapor core that are subject to large temperature gradients. The thin films evaporate rapidly, sometimes faster than the incoming mass flux can replenish bulk fluid in the microchannel. When the local vapor pressure spike exceeds the inlet pressure, it forces the upstream interface to travel back into the inlet plenum and create flow boiling instabilities. Flow boiling instabilities reduce the temperature at which critical heat flux occurs and create channel dryout. Dryout causes high surface temperatures that can destroy the electronic circuits that use two-phase micro heat exchangers for cooling. Flow boiling instability is characterized by periodic oscillation of flow regimes which induce oscillations in fluid temperature, wall temperatures, pressure drop, and mass flux. When nanofluids are used in flow boiling, the nanoparticles become deposited on the heated surface and change its thermal conductivity, roughness, capillarity, wettability, and nucleation site density. It also affects heat transfer by changing bubble departure diameter, bubble departure frequency, and the evaporation of the micro and macrolayer beneath the growing bubbles. Flow boiling was investigated in this study using degassed, deionized water, and 0.001 vol% aluminum oxide nanofluids in a single rectangular brass microchannel with a hydraulic diameter of 229 µm for one inlet fluid temperature of 63°C and two constant flow rates of 0.41 ml/min and 0.82 ml/min. The power input was adjusted for two average surface temperatures of 103°C and 119°C at each flow rate. High speed images were taken periodically for water and nanofluid flow boiling after durations of 25, 75, and 125 minutes from the start of flow. The change in regime timing revealed the effect of nanoparticle suspension and deposition on the Onset of Nucelate Boiling (ONB) and the Onset of Bubble Elongation (OBE). Cycle duration and bubble frequencies are reported for different nanofluid flow boiling durations. The addition of nanoparticles was found to stabilize bubble nucleation and growth and limit the recession rate of the upstream and downstream interfaces, mitigating the spreading of dry spots and elongating the thin film regions to increase thin film evaporation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis covers the correction, and verification, development, and implementation of a computational fluid dynamics (CFD) model for an orifice plate meter. Past results were corrected and further expanded on with compressibility effects of acoustic waves being taken into account. One dynamic pressure difference transducer measures the time-varying differential pressure across the orifice meter. A dynamic absolute pressure measurement is also taken at the inlet of the orifice meter, along with a suitable temperature measurement of the mean flow gas. Together these three measurements allow for an incompressible CFD simulation (using a well-tested and robust model) for the cross-section independent time-varying mass flow rate through the orifice meter. The mean value of this incompressible mass flow rate is then corrected to match the mean of the measured flow rate( obtained from a Coriolis meter located up stream of the orifice meter). Even with the mean and compressibility corrections, significant differences in the measured mass flow rates at two orifice meters in a common flow stream were observed. This means that the compressibility effects associated with pulsatile gas flows is significant in the measurement of the time-varying mass flow rate. Future work (with the approach and initial runs covered here) will provide an indirect verification of the reported mass flow rate measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The existence and morphology, as well as the dynamics of micro-scale gas-liquid interfaces is investigated numerically and experimentally. These studies can be used to assess liquid management issues in microsystems such as PEMFC gas flow channels, and are meant to open new research perspectives in two-phase flow, particularly in film deposition on non-wetting surfaces. For example the critical plug volume data can be used to deliver desired length plugs, or to determine the plug formation frequency. The dynamics of gas-liquid interfaces, of interest for applications involving small passages (e.g. heat exchangers, phase separators and filtration systems), was investigated using high-speed microscopy - a method that also proved useful for the study of film deposition processes. The existence limit for a liquid plug forming in a mixed wetting channel is determined by numerical simulations using Surface Evolver. The plug model simulate actual conditions in the gas flow channels of PEM fuel cells, the wetting of the gas diffusion layer (GDL) side of the channel being different from the wetting of the bipolar plate walls. The minimum plug volume, denoted as critical volume is computed for a series of GDL and bipolar plate wetting properties. Critical volume data is meant to assist in the water management of PEMFC, when corroborated with experimental data. The effect of cross section geometry is assessed by computing the critical volume in square and trapezoidal channels. Droplet simulations show that water can be passively removed from the GDL surface towards the bipolar plate if we take advantage on differing wetting properties between the two surfaces, to possibly avoid the gas transport blockage through the GDL. High speed microscopy was employed in two-phase and film deposition experiments with water in round and square capillary tubes. Periodic interface destabilization was observed and the existence of compression waves in the gas phase is discussed by taking into consideration a naturally occurring convergent-divergent nozzle formed by the flowing liquid phase. The effect of channel geometry and wetting properties was investigated through two-phase water-air flow in square and round microchannels, having three static contact angles of 20, 80 and 105 degrees. Four different flow regimes are observed for a fixed flow rate, this being thought to be caused by the wetting behavior of liquid flowing in the corners as well as the liquid film stability. Film deposition experiments in wetting and non-wetting round microchannels show that a thicker film is deposited for wetting conditions departing from the ideal 0 degrees contact angle. A film thickness dependence with the contact angle theta as well as the Capillary number, in the form h_R ~ Ca^(2/3)/ cos(theta) is inferred from scaling arguments, for contact angles smaller than 36 degrees. Non-wetting film deposition experiments reveal that a film significantly thicker than the wetting Bretherton film is deposited. A hydraulic jump occurs if critical conditions are met, as given by a proposed nondimensional parameter similar to the Froude number. Film thickness correlations are also found by matching the measured and the proposed velocity derived in the shock theory. The surface wetting as well as the presence of the shock cause morphological changes in the Taylor bubble flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micro-scale, two-phase flow is found in a variety of devices such as Lab-on-a-chip, bio-chips, micro-heat exchangers, and fuel cells. Knowledge of the fluid behavior near the dynamic gas-liquid interface is required for developing accurate predictive models. Light is distorted near a curved gas-liquid interface preventing accurate measurement of interfacial shape and internal liquid velocities. This research focused on the development of experimental methods designed to isolate and probe dynamic liquid films and measure velocity fields near a moving gas-liquid interface. A high-speed, reflectance, swept-field confocal (RSFC) imaging system was developed for imaging near curved surfaces. Experimental studies of dynamic gas-liquid interface of micro-scale, two-phase flow were conducted in three phases. Dynamic liquid film thicknesses of segmented, two-phase flow were measured using the RSFC and compared to a classic film thickness deposition model. Flow fields near a steadily moving meniscus were measured using RSFC and particle tracking velocimetry. The RSFC provided high speed imaging near the menisci without distortion caused the gas-liquid interface. Finally, interfacial morphology for internal two-phase flow and droplet evaporation were measured using interferograms produced by the RSFC imaging technique. Each technique can be used independently or simultaneously when.