970 resultados para Proximity Voting
Resumo:
BACKGROUND: Active screening by mobile teams is considered the best method for detecting human African trypanosomiasis (HAT) caused by Trypanosoma brucei gambiense but the current funding context in many post-conflict countries limits this approach. As an alternative, non-specialist health care workers (HCWs) in peripheral health facilities could be trained to identify potential cases who need testing based on their symptoms. We explored the predictive value of syndromic referral algorithms to identify symptomatic cases of HAT among a treatment-seeking population in Nimule, South Sudan. METHODOLOGY/PRINCIPAL FINDINGS: Symptom data from 462 patients (27 cases) presenting for a HAT test via passive screening over a 7 month period were collected to construct and evaluate over 14,000 four item syndromic algorithms considered simple enough to be used by peripheral HCWs. For comparison, algorithms developed in other settings were also tested on our data, and a panel of expert HAT clinicians were asked to make referral decisions based on the symptom dataset. The best performing algorithms consisted of three core symptoms (sleep problems, neurological problems and weight loss), with or without a history of oedema, cervical adenopathy or proximity to livestock. They had a sensitivity of 88.9-92.6%, a negative predictive value of up to 98.8% and a positive predictive value in this context of 8.4-8.7%. In terms of sensitivity, these out-performed more complex algorithms identified in other studies, as well as the expert panel. The best-performing algorithm is predicted to identify about 9/10 treatment-seeking HAT cases, though only 1/10 patients referred would test positive. CONCLUSIONS/SIGNIFICANCE: In the absence of regular active screening, improving referrals of HAT patients through other means is essential. Systematic use of syndromic algorithms by peripheral HCWs has the potential to increase case detection and would increase their participation in HAT programmes. The algorithms proposed here, though promising, should be validated elsewhere.
Resumo:
Wood ant species show differences in their social structure, especially in the level of polygyny (number of laying queens per nest) and polydomy (number of nest per colony), both within and between species. We demonstrate here for the first time that Formica lugubris displays two different social forms in close proximity in alpine unmanaged forests of the Swiss National Park. The genetic data (7 microsatellite loci) and field data indicate that one population is mostly monogynous to weakly polygynous (r = 0.438) and monodomous, the second one being polygynous (r = 0.113) and polydomous. Within this latter population new nests are founded by budding, leading to the observed high density of nests. These two different social structures, possibly being two expressions of a same continuum, could be explained by several ecological or environmental factors (e.g. habitat saturation, resource competition) and also historical effects.
Resumo:
This project consists of a study of the settlement of population during the Late Republican period in the Camp de Tarragona, an extensive agricultural plain in the shape of a crescent moon opening out towards the sea which constitutes the area of land in closest proximity to the capital, Tarraco. It does not therefore include the entirety of the ager Tarraconensis, which covered a considerably larger area. After reviewing the preceding Iberian presence in the area, the study focuses on the archaeological evidence corroborating the settlement of population referred to above and its evolution during the course of the two centuries prior to the rule of Augustus. Attention is also given to certain speciic themes, such as the centuriation of certain sectors, the presence of military checkpoints, the production of ceramics during the Republican period (at Fontscaldes and Valls) and the appearance of the irst Roman villas (El Moro and El Mas d’en Gras).
Resumo:
It is commonly regarded that the overuse of traffic control devices desensitizes drivers and leads to disrespect, especially for low-volume secondary roads with limited enforcement. The maintenance of traffic signs is also a tort liability concern, exacerbated by unnecessary signs. The Federal Highway Administration’s (FHWA) Manual on Uniform Traffic Control Devices (MUTCD) and the Institute of Transportation Engineer’s (ITE) Traffic Control Devices Handbook provide guidance for the implementation of STOP signs based on expected compliance with right-of-way rules, provision of through traffic flow, context (proximity to other controlled intersections), speed, sight distance, and crash history. The approach(es) to stop is left to engineering judgment and is usually dependent on traffic volume or functional class/continuity of system. Although presently being considered by the National Committee on Traffic Control Devices, traffic volume itself is not given as a criterion for implementation in the MUTCD. STOP signs have been installed at many locations for various reasons which no longer (or perhaps never) met engineering needs. If in fact the presence of STOP signs does not increase safety, removal should be considered. To date, however, no guidance exists for the removal of STOP signs at two-way stop-controlled intersections. The scope of this research is ultra-low-volume (< 150 daily entering vehicles) unpaved intersections in rural agricultural areas of Iowa, where each of the 99 counties may have as many as 300 or more STOP sign pairs. Overall safety performance is examined as a function of a county excessive use factor, developed specifically for this study and based on various volume ranges and terrain as a proxy for sight distance. Four conclusions are supported: (1) there is no statistical difference in the safety performance of ultra-low-volume stop-controlled and uncontrolled intersections for all drivers or for younger and older drivers (although interestingly, older drivers are underrepresented at both types of intersections); (2) compliance with stop control (as indicated by crash performance) does not appear to be affected by the use or excessive use of STOP signs, even when adjusted for volume and a sight distance proxy; (3) crash performance does not appear to be improved by the liberal use of stop control; (4) safety performance of uncontrolled intersections appears to decline relative to stop-controlled intersections above about 150 daily entering vehicles. Subject to adequate sight distance, traffic professionals may wish to consider removal of control below this threshold. The report concludes with a section on methods and legal considerations for safe removal of stop control.
Resumo:
The overarching goal of the proposed research was to provide a predictive tool for knickpoint propagation within the HCA (Hungry Canyon Alliance) territory. Knickpoints threaten the stability of bridge structures in Western Iowa. The study involved detailed field investigations over two years in order to monitor the upstream migration of a knickpoint on Mud Creek in Mills County, IA and identify the key mechanisms triggering knickpoint propagation. A state-of-the-art laser level system mounted on a movable truss provided continuous measurements of the knickpoint front for different flow conditions. A pressure transducer found in proximity of the truss provided simultaneous measurements of the flow depth. The laser and pressure transducer measurements led to the identification of the conditions at which the knickpoint migration commences. It was suggested that negative pressures developed by the reverse roller flow near the toe of the knickpoint face triggered undercutting of the knickpoint at this location. The pressure differential between the negative pressure and the atmospheric pressure also draws the impinging jet closer to the knickpoint face producing scour. In addition, the pressure differential may induce suction of sediment from the face. Other contributing factors include slump failure, seepage effects, and local fluvial erosion due to the exerted fluid shear. The prevailing flow conditions and soil information along with the channel cross-sectional geometry and gradient were used as inputs to a transcritical, one dimensional, hydraulic/geomorphic numerical model, which was used to map the flow characteristics and shear stress conditions near the knickpoint. Such detailed flow calculations do not exist in the published literature. The coupling of field and modeling work resulted in the development of a blueprint methodology, which can be adopted in different parts of the country for evaluating knickpoint evolution. This information will assist local government agencies in better understanding the principal factors that cause knickpoint propagation and help estimate the needed response time to control the propagation of a knickpoint after one has been identified.
Resumo:
Iowa state, county, and city engineering offices expend considerable effort monitoring the state’s approximately 25,000 bridges, most of which span small waterways. In fact, the need for monitoring is actually greater for bridges over small waterways because scour processes are exacerbated by the close proximity of abutments, piers, channel banks, approach embankments, and other local obstructions. The bridges are customarily inspected biennially by the county’s road department bridge inspectors. It is extremely time consuming and difficult to obtain consistent, reliable, and timely information on bridge-waterway conditions for so many bridges. Moreover, the current approaches to gather survey information is not uniform, complete, and quantitative. The methodology and associated software (DIGIMAP) developed through the present project enable a non-intrusive means to conduct fast, efficient, and accurate inspection of the waterways in the vicinity of the bridges and culverts using one technique. The technique combines algorithms image of registration and velocimetry using images acquired with conventional devices at the inspection site. The comparison of the current bridge inspection and monitoring methods with the DIGIMAP methodology enables to conclude that the new procedure assembles quantitative information on the waterway hydrodynamic and morphologic features with considerable reduced effort, time, and cost. It also improves the safety of the bridge and culvert inspections conducted during normal and extreme hydrologic events. The data and information are recorded in a digital format, enabling immediate and convenient tracking of the waterway changes over short or long time intervals.
Resumo:
Two portable Radio Frequency IDentification (RFID) systems (made by Texas Instruments and HiTAG) were developed and tested for bridge scour monitoring by the Department of Civil and Environmental Engineering at the University of Iowa (UI). Both systems consist of three similar components: 1) a passive cylindrical transponder of 2.2 cm in length (derived from transmitter/responder); 2) a low frequency reader (~134.2 kHz frequency); and 3) an antenna (of rectangular or hexagonal loop). The Texas Instruments system can only read one smart particle per time, while the HiTAG system was successfully modified here at UI by adding the anti-collision feature. The HiTAG system was equipped with four antennas and could simultaneously detect 1,000s of smart particles located in a close proximity. A computer code was written in C++ at the UI for the HiTAG system to allow simultaneous, multiple readouts of smart particles under different flow conditions. The code is written for the Windows XP operational system which has a user-friendly windows interface that provides detailed information regarding the smart particle that includes: identification number, location (orientation in x,y,z), and the instance the particle was detected.. These systems were examined within the context of this innovative research in order to identify the best suited RFID system for performing autonomous bridge scour monitoring. A comprehensive laboratory study that included 142 experimental runs and limited field testing was performed to test the code and determine the performance of each system in terms of transponder orientation, transponder housing material, maximum antenna-transponder detection distance, minimum inter-particle distance and antenna sweep angle. The two RFID systems capabilities to predict scour depth were also examined using pier models. The findings can be summarized as follows: 1) The first system (Texas Instruments) read one smart particle per time, and its effective read range was about 3ft (~1m). The second system (HiTAG) had similar detection ranges but permitted the addition of an anti-collision system to facilitate the simultaneous identification of multiple smart particles (transponders placed into marbles). Therefore, it was sought that the HiTAG system, with the anti-collision feature (or a system with similar features), would be preferable when compared to a single-read-out system for bridge scour monitoring, as the former could provide repetitive readings at multiple locations, which could help in predicting the scour-hole bathymetry along with maximum scour depth. 2) The HiTAG system provided reliable measures of the scour depth (z-direction) and the locations of the smart particles on the x-y plane within a distance of about 3ft (~1m) from the 4 antennas. A Multiplexer HTM4-I allowed the simultaneous use of four antennas for the HiTAG system. The four Hexagonal Loop antennas permitted the complete identification of the smart particles in an x, y, z orthogonal system as function of time. The HiTAG system can be also used to measure the rate of sediment movement (in kg/s or tones/hr). 3) The maximum detection distance of the antenna did not change significantly for the buried particles compared to the particles tested in the air. Thus, the low frequency RFID systems (~134.2 kHz) are appropriate for monitoring bridge scour because their waves can penetrate water and sand bodies without significant loss of their signal strength. 4) The pier model experiments in a flume with first RFID system showed that the system was able to successfully predict the maximum scour depth when the system was used with a single particle in the vicinity of pier model where scour-hole was expected. The pier model experiments with the second RFID system, performed in a sandbox, showed that system was able to successfully predict the maximum scour depth when two scour balls were used in the vicinity of the pier model where scour-hole was developed. 5) The preliminary field experiments with the second RFID system, at the Raccoon River, IA near the Railroad Bridge (located upstream of 360th street Bridge, near Booneville), showed that the RFID technology is transferable to the field. A practical method would be developed for facilitating the placement of the smart particles within the river bed. This method needs to be straightforward for the Department of Transportation (DOT) and county road working crews so it can be easily implemented at different locations. 6) Since the inception of this project, further research showed that there is significant progress in RFID technology. This includes the availability of waterproof RFID systems with passive or active transponders of detection ranges up to 60 ft (~20 m) within the water–sediment column. These systems do have anti-collision and can facilitate up to 8 powerful antennas which can significantly increase the detection range. Such systems need to be further considered and modified for performing automatic bridge scour monitoring. The knowledge gained from the two systems, including the software, needs to be adapted to the new systems.
Resumo:
En la propuesta de proyecto del IMI (Instituto Municipal de Informática) se fija como objetivo la definición, arquitectura y diseño de un sistema informático distribuido que permita la realización de consultas populares, garantizando la confidencialidad, seguridad, sincronía y posibilidad de acceso móvil.
Resumo:
A periprosthetic fracture is a fracture around or in proximity of a prosthetic implant. As more and more prostheses are implanted, the incidence of periprosthetic fractures also increases. Several risk factors have been outlined, some due to the patient, and some due to the implant itself. Key points in diagnosis are the case history and the imaging, as they allow the distinction between a well-fixed and a loose prosthesis. Correct classification is crucial for the treatment choice, which can be non-operative or consist in an osteosynthesis or in a revision arthroplasty, depending on the patient's general medical condition and the local status.
Resumo:
The value of earmarks as an efficient means of personal identification is still subject to debate. It has been argued that the field is lacking a firm systematic and structured data basis to help practitioners to form their conclusions. Typically, there is a paucity of research guiding as to the selectivity of the features used in the comparison process between an earmark and reference earprints taken from an individual. This study proposes a system for the automatic comparison of earprints and earmarks, operating without any manual extraction of key-points or manual annotations. For each donor, a model is created using multiple reference prints, hence capturing the donor within source variability. For each comparison between a mark and a model, images are automatically aligned and a proximity score, based on a normalized 2D correlation coefficient, is calculated. Appropriate use of this score allows deriving a likelihood ratio that can be explored under known state of affairs (both in cases where it is known that the mark has been left by the donor that gave the model and conversely in cases when it is established that the mark originates from a different source). To assess the system performance, a first dataset containing 1229 donors elaborated during the FearID research project was used. Based on these data, for mark-to-print comparisons, the system performed with an equal error rate (EER) of 2.3% and about 88% of marks are found in the first 3 positions of a hitlist. When performing print-to-print transactions, results show an equal error rate of 0.5%. The system was then tested using real-case data obtained from police forces.
Resumo:
The Iowa Flood Mitigation Program is created within Code of Iowa, Chapter 418. The Program seeks to provide funds for flood mitigation projects that otherwise would not be funded. The Flood Mitigation Board is responsible for the implementation Code of Iowa Chapter 418. The membership of the Board is comprised of four voting public members appointed by the Governor, five voting members representing state agencies, and four non-voting ex-officio members of the legislature.
Resumo:
Little River Lake watershed is a 13,305 acre subwatershed of Little River. The 788 acre lake was listed as a 303d impaired water body in 2008 due to elevated turbidity and algae levels. The Decatur SWCD has prioritized water quality protection efforts within the Little River Lake watershed because 1) portions of this watershed has been identified as the primary contributor of sediment and nutrients to Little River Lake, which provides an essential source of drinking water for Decatur County and the Southern Iowa Rural Water Association; 2) the watershed provides exemplary education and project interpretation opportunities due to its proximity to Little River Lake Recreation Area, and 3) by using targeted and proven soil conservation practices to address water quality deficiencies the probability of successfully attenuating soil erosion and ameliorating water quality impairments is enhanced. The specific goals of this proposal are to: 1. reduce annual sediment, and phosphorous delivery to the lake by 11,280 tons and 14,664 lbs., respectively, via applications of conservation practices on targeted agricultural land; 2. delist the lake as an EPA 303d impaired water body via water quality enhancement; 3. obtain a “Full Support” status for the lake’s aquatic life and recreational use; 4. reduce potable water treatment costs (minimum 50% cost reduction) associated with high suspended solid levels; and 5. restore a viable sport-fish population, thereby bolstering tourism and the economy. To achieve timely project implementation the Decatur SWCD has cooperated with the IDNR Watershed Improvement Section, Fisheries Bureau, and IDALS-DSC to assess extant water quality and watershed conditions, coalesced a diverse team of committed partners and secured matching funding from multiple sources.
Resumo:
We analyse the variations produced on tsunami propagation and impact over a straight coastline because of the presence of a submarine canyon incised in the continental margin. For ease of calculation we assume that the shoreline and the shelf edge are parallel and that the incident wave approaches them normally. A total of 512 synthetic scenarios have been computed by combining the bathymetry of a continental margin incised by a parameterised single canyon and the incident tsunami waves. The margin bathymetry, the canyon and the tsunami waves have been generated using mathematical functions (e.g. Gaussian). Canyon parameters analysed are: (i) incision length into the continental shelf, which for a constant shelf width relates directly to the distance from the canyon head to the coast, (ii) canyon width, and (iii) canyon orientation with respect to the shoreline. Tsunami wave parameters considered are period and sign. The COMCOT tsunami model from Cornell University was applied to propagate the waves across the synthetic bathymetric surfaces. Five simulations of tsunami propagation over a non-canyoned margin were also performed for reference. The analysis of the results reveals a strong variation of tsunami arrival times and amplitudes reaching the coastline when a tsunami wave travels over a submarine canyon, with changing maximum height location and alongshore extension. In general, the presence of a submarine canyon lowers the arrival time to the shoreline but prevents wave build-up just over the canyon axis. This leads to a decrease in tsunami amplitude at the coastal stretch located just shoreward of the canyon head, which results in a lower run-up in comparison with a non-canyoned margin. Contrarily, an increased wave build-up occurs on both sides of the canyon head, generating two coastal stretches with an enhanced run-up. These aggravated or reduced tsunami effects are modified with (i) proximity of the canyon tip to the coast, amplifying the wave height, (ii) canyon width, enlarging the areas with lower and higher maximum height wave along the coastline, and (iii) canyon obliquity with respect to the shoreline and shelf edge, increasing wave height shoreward of the leeward flank of the canyon. Moreover, the presence of a submarine canyon near the coast produces a variation of wave energy along the shore, eventually resulting in edge waves shoreward of the canyon head. Edge waves subsequently spread out alongshore reaching significant amplitudes especially when coupling with tsunami secondary waves occurs. Model results have been groundtruthed using the actual bathymetry of Blanes Canyon area in the North Catalan margin. This paper underlines the effects of the presence, morphology and orientation of submarine canyons as a determining factor on tsunami propagation and impact, which could prevail over other effects deriving from coastal configuration.
Resumo:
The Center for Transportation Research and Education performed a traffic signal inventory study for the Iowa Department of Transportation. The purpose of this study was to determine the level of compliance with the Manual on Uniform Traffic Control Devices (MUTCD) and other industry standards of traffic signals on the state highway system. Signals were randomly selected throughout the State of Iowa. Only signals in cities with a population less than 5,000 were considered. Several intersections need to be addressed immediately to correct clearance timing settings. Red clearance intervals were frequently too short. A handful of intersections had inadequate pedestrian clearance times. Six intersections had at least one yellow clearance interval that did not meet Institute of Transportation Engineers standards. Some of the intersections likely would not meet traffic signal warrants and should be investigated for possible removal. The most common problem found with traffic signals was a lack of maintenance. Many of the signals had at least one of the following problems: burned out lights (signals and/or pedestrian heads), pedestrian lenses in need of replacement, dirty cabinet/missing or poor filter, missing visors, or inoperative pedestrian push buttons. Timing sheets were frequently missing or out of date. Another frequent noncompliance issue was the use of backplates. The MUTCD states that backplates should be used on signals viewed against a bright sky. The majority of signals inventoried did not have backplates on the mast-arm mounted signals. The timing at some intersections could likely be improved by reducing the cycle length. Where there were multiple signals in close proximity rarely was there any attempt at signal coordination. Finally, a number of intersections had equipment that by today’s standards would be considered obsolete.