963 resultados para Protecting Food-Producing Land
Resumo:
Electrical resistivity of soils and sediments is strongly influenced by the presence of interstitial water. Taking advantage of this dependency, electrical-resistivity imaging (ERI) can be effectively utilized to estimate subsurface soil-moisture distributions. The ability to obtain spatially extensive data combined with time-lapse measurements provides further opportunities to understand links between land use and climate processes. In natural settings, spatial and temporal changes in temperature and porewater salinity influence the relationship between soil moisture and electrical resistivity. Apart from environmental factors, technical, theoretical, and methodological ambiguities may also interfere with accurate estimation of soil moisture from ERI data. We have examined several of these complicating factors using data from a two-year study at a forest-grassland ecotone, a boundary between neighboring but different plant communities.At this site, temperature variability accounts for approximately 20-45 of resistivity changes from cold winter to warm summer months. Temporal changes in groundwater conductivity (mean=650 S/cm =57.7) and a roughly 100-S/cm spatial difference between the forest and grassland had only a minor influence on the moisture estimates. Significant seasonal fluctuations in temperature and precipitation had negligible influence on the basic measurement errors in data sets. Extracting accurate temporal changes from ERI can be hindered by nonuniqueness of the inversion process and uncertainties related to time-lapse inversion schemes. The accuracy of soil moisture obtained from ERI depends on all of these factors, in addition to empirical parameters that define the petrophysical soil-moisture/resistivity relationship. Many of the complicating factors and modifying variables to accurately quantify soil moisture changes with ERI can be accounted for using field and theoretical principles.
Resumo:
In North America and Europe, the binary toxin positive Clostridium difficile strains of the ribotypes 027 and 078 have been associated with death, toxic megacolon and other adverse outcomes. Following an increase in C. difficile infections (CDIs) in Queensland, a prevalence study involving 175 hospitals was undertaken in early 2012, identifying 168 cases of CDI over a 2 month period. Patient demographics and clinical characteristics were recorded, and C. difficile isolates were ribotyped and tested for the presence of binary toxin genes. Most patients (106/168, 63.1%) were aged over 60 years. Overall, 98 (58.3%) developed symptoms after hospitalisation; 89 cases (53.0%) developed symptoms more than 48 hours after admission. Furthermore, 27 of the 62 (67.7%) patients who developed symptoms in the community ad been hospitalised within the last 3 months. Thirteen of the 168 (7.7%) cases identified had severe disease, resulting in admission to the Intensive Care Unit or death within 30 days of the onset of symptoms. The 3 most common ribotypes isolated were UK 002 (22.9%), UK 014 (13.3%) and the binary toxin-positive ribotype UK 244 (8.4%). The only other binary toxin positive ribotype isolated was UK 078 (n = 1). Of concern was the detection of the binary toxin positive ribotype UK 244, which has recently been described in other parts of Australia and New Zealand. No isolates were of the international epidemic clone of ribotype UK 027, although ribotype UK 244 is genetically related to this clone. Further studies are required to track the epidemiology of ribotype UK 244 in Australia and New Zealand. Commun Dis Intell 2014;38(4):E279–E284.
Resumo:
Objectives: To assess socio-economic differences in three components of nutrition knowledge, i.e. knowledge of (i) the relationship between diet and disease, (ii) the nutrient content of foods and (iii) dietary guideline recommendations; furthermore, to determine if socio-economic differences in nutrition knowledge contribute to inequalities in food purchasing choices. Design: The cross-sectional study considered household food purchasing,nutrition knowledge, socio-economic and demographic information. Household food purchasing choices were summarised by three indices, based on self-reported purchasing of sixteen groceries, nineteen fruits and twenty-one vegetables. Socio-economic position (SEP) was measured by household income and education. Associations between SEP, nutrition knowledge and food purchasing were examined using general linear models adjusted for age, gender, household type and household size. Setting: Brisbane, Australia in 2000. Subjects: Main household food shoppers (n 1003, response rate 66?4 %), located in fifty small areas (Census Collectors Districts). Results: Shoppers in households of low SEP made food purchasing choices that were less consistent with dietary guideline recommendations: they were more likely to purchase grocery foods comparatively higher in salt, sugar and fat, and lower in fibre, and they purchased a narrower range of fruits and vegetables. Those of higher SEP had greater nutrition knowledge and this factor attenuated most associations between SEP and food purchasing choices. Among nutrition knowledge factors, knowledge of the relationship between diet and disease made the greatest and most consistent contribution to explaining socio-economic differences in food purchasing. Conclusions: Addressing inequalities in nutrition knowledge is likely to reduce socio-economic differences in compliance with dietary guidelines. Improving knowledge of the relationship between diet and disease appears to be a particularly relevant focus for health promotion aimed to reduce socio-economic differences in diet and related health inequalities.
Resumo:
Food for Thought embraces the notion that a revolution can start at the dinner table. Drawing inspiration from Judy Chicago’s seminal artwork ‘The Dinner Party’, LEVEL Artist Run Initiative hosted a series of dinner party events in order to create vibrant discussions concerning the role of women and feminism in the twenty-first century. The work consisted of a reading room, four dinner party events, and four public talks covering the topics: 'Women and the arts';'Generations: plurality and difference'; 'Women in the media'; and 'How can art contribute to political change for women in the 21st century?'
Resumo:
BACKGROUND The increasing cost of fossil fuels as well as the escalating social and industrial awareness of the environmental impacts associated with the use of fossil fuels has created the need for more sustainable fuel options. Bioethanol, produced from renewable biomass such as sugar and starch materials, is believed to be one of these options, and it is currently being harnessed extensively. However, the utilization of sugar and starch materials as feedstocks for bioethanol production creates a major competition with the food market in terms of land for cultivation, and this makes bioethanol from these sources economically less attractive. RESULT This study explores the suitability of microalgae (Chlorococum sp.) as a substrate for bioethanol production via yeast (Saccharomycesbayanus)under different fermentation conditions. Results show a maximum ethanol concentration of 3.83 g L -1 obtained from 10 g L-1 of lipid-extracted microalgae debris. CONCLUSION This productivity level (∼38% w/w), which is in keeping with that of current production systems endorses microalgae as a promising substrate for bioethanol production.
Resumo:
Improved biopharmaceutical delivery may be achieved via the use of biodegradable microspheres as delivery vehicles. Biodegradable microspheres offer the advantages of maintaining sustained protein release over time whilst simultaneously protecting the biopharmaceutical from degradation. Particle samples produced by ultrasonic atomization were studied in order to determine a feed stock capable of producing protein loaded poly-ε-caprolactone (PCL) particles suitable for nasal delivery (i.e., less than 20 μm). A 40 kHz atomization system was used with a 6 mm full wave atomization probe. The effect of solids percent, feed flow rate, volumetric ratio of the polymer stock to the protein stock, and protein concentration in the protein stock on particle size characteristics were determined. It was shown that feed stocks containing 100 parts of 0.5 or 1.0% w/v PCL in acetone with one part 100 mg ml -1 BSA and 15 mg ml -1 PVA produced particles with a mass moment diameter (D[4,3]) of 13.17 μm and 9.10 μm, respectively in addition to displaying high protein encapsulation efficiencies of 93 and 95%, respectively. The biodegradable PCL particles were shown to be able to deliver encapsulated protein in vitro under physiological conditions.
Resumo:
The preservation technique of drying offers a significant increase in the shelf life of food materials, along with the modification of quality attributes due to simultaneous heat and mass transfer. Variations in porosity are just one of the microstructural changes that take place during the drying of most food materials. Some studies found that there may be a relationship between porosity and the properties of dried foods. However, no conclusive relationship has yet been established in the literature. This paper presents an overview of the factors that influence porosity, as well as the effects of porosity on dried food quality attributes. The effect of heat and mass transfer on porosity is also discussed along with porosity development in various drying methods. After an extensive review of the literature concerning the study of porosity, it emerges that a relationship between process parameters, food qualities, and sample properties can be established. Therefore, we propose a hypothesis of relationships between process parameters, product quality attributes, and porosity.
Resumo:
Food materials are complex in nature as it has heterogeneous, amorphous, hygroscopic and porous properties. During processing, microstructure of food materials changes which significantly affects other properties of food. An appropriate understanding of the microstructure of the raw food material and its evolution during processing is critical in order to understand and accurately describe dehydration processes and quality anticipation. This review critically assesses the factors that influence the modification of microstructure in the course of drying of fruits and vegetables. The effect of simultaneous heat and mass transfer on microstructure in various drying methods is investigated. Effects of changes in microstructure on other functional properties of dried foods are discussed. After an extensive review of the literature, it is found that development of food structure significantly depends on fresh food properties and process parameters. Also, modification of microstructure influences the other properties of final product. An enhanced understanding of the relationships between food microstructure, drying process parameters and final product quality will facilitate the energy efficient optimum design of the food processor in order to achieve high-quality food
Resumo:
Porosity is one of the key parameters of the macroscopic structure of porous media, generally defined as the ratio of the free spaces occupied (by the volume of air) within the material to the total volume of the material. Porosity is determined by measuring skeletal volume and the envelope volume. Solid displacement method is one of the inexpensive and easy methods to determine the envelope volume of a sample with an irregular shape. In this method, generally glass beads are used as a solid due to their uniform size, compactness and fluidity properties. The smaller size of the glass beads means that they enter into the open pores which have a larger diameter than the glass beads. Although extensive research has been carried out on porosity determination using displacement method, no study exists which adequately reports micro-level observation of the sample during measurement. This study set out with the aim of assessing the accuracy of solid displacement method of bulk density measurement of dried foods by micro-level observation. Solid displacement method of porosity determination was conducted using a cylindrical vial (cylindrical plastic container) and 57 µm glass beads in order to measure the bulk density of apple slices at different moisture contents. A scanning electron microscope (SEM), a profilometer and ImageJ software were used to investigate the penetration of glass beads into the surface pores during the determination of the porosity of dried food. A helium pycnometer was used to measure the particle density of the sample. Results show that a significant number of pores were large enough to allow the glass beads to enter into the pores, thereby causing some erroneous results. It was also found that coating the dried sample with appropriate coating material prior to measurement can resolve this problem.
Resumo:
Background Food neophobia, the rejection of unknown or novel foods, may result in poor dietary patterns. This study investigates the cross-sectional relationship between neophobia in children aged 24 months and variety of fruit and vegetable consumption, intake of discretionary foods and weight. Methods Secondary analysis of data from 330 parents of children enrolled in the NOURISH RCT (control group only) and SAIDI studies was performed using data collected at child age 24 months. Neophobia was measured at 24 months using the Child Food Neophobia Scale (CFNS). The cross-sectional associations between total CFNS score and fruit and vegetable variety, discretionary food intake and BMI (Body Mass Index) Z-score were examined via multiple regression models; adjusting for significant covariates. Results At 24 months, more neophobic children were found to have lower variety of fruits (β=-0.16, p=0.003) and vegetables (β=-0.29, p<0.001) but have a greater proportion of daily energy from discretionary foods (β=0.11, p=0.04). There was no significant association between BMI Z-score and CFNS score. Conclusions Neophobia is associated with poorer dietary quality. Results highlight the need for interventions to (1) begin early to expose children to a wide variety of nutritious foods before neophobia peaks and (2) enable health professionals to educate parents on strategies to overcome neophobia.
Resumo:
This project examined the potential for historical mapping of land resources to be upgraded to meet current requirements for natural resource management. The methods of spatial disaggregation used to improve the scale of mapping were novel and provide a method to rapidly improve existing information. The thesis investigated the potential to use digital soil mapping techniques and the multi-scale identification of areas within historical land systems mapping to provide enhanced information to support modern natural resource management needs. This was undertaken in the Burnett Catchment of South-East Queensland.
Resumo:
Through its mandate to protect and preserve places of ‘outstanding universal value’, the World Heritage Convention provides an unlikely yet effective tool in global efforts to mitigate climate change. The practical efficacy of the Strategy to Assist States Parties to Implement Appropriate Management Responses (‘the Strategy’), which represents the World Heritage Committee’s primary response to the threats posed by climate change to World Heritage sites, is undermined by its weak stance on mitigation. This paper argues that the World Heritage Convention imposes stronger obligations on States Parties than those contained in the Strategy, including a duty on States Parties to commit to ‘deep cuts’ in greenhouse gas emissions. In order to ensure the continuing success of the World Heritage Convention States Parties must engage in extensive mitigation strategies without delay.