856 resultados para Professores - Stress ocupacional - Brasil
Resumo:
Compared the different patterns of stress reported by mothers of children (aged 5–12 yrs) with either a chronic physical illness (cystic fibrosis) or a chronic psychological disorder (autism), and children without a physical or psychological disorder. 24 mothers from each of these 3 groups completed a short form of the Questionnaire on Resources and Stress. Each clinical group exhibited different patterns of stressful response consistent with the nature of the disorder and the requirements of care imposed on the families. Autism contributed significantly more to family stress than did cystic fibrosis. The number of children in the family was not a significant variable. Implications for the development of family intervention programs are discussed
Resumo:
A synthesis is presented of the predictive capability of a family of near-wall wall-normal free Reynolds stress models (which are completely independent of wall topology, i.e., of the distance fromthe wall and the normal-to-thewall orientation) for oblique-shock-wave/turbulent-boundary-layer interactions. For the purpose of comparison, results are also presented using a standard low turbulence Reynolds number k–ε closure and a Reynolds stress model that uses geometric wall normals and wall distances. Studied shock-wave Mach numbers are in the range MSW = 2.85–2.9 and incoming boundary-layer-thickness Reynolds numbers are in the range Reδ0 = 1–2×106. Computations were carefully checked for grid convergence. Comparison with measurements shows satisfactory agreement, improving on results obtained using a k–ε model, and highlights the relative importance of redistribution and diffusion closures, indicating directions for future modeling work.
Resumo:
This paper is concerned with recent advances in the development of near wall-normal-free Reynolds-stress models, whose single point closure formulation, based on the inhomogeneity direction concept, is completely independent of the distance from the wall, and of the normal to the wall direction. In the present approach the direction of the inhomogeneity unit vector is decoupled from the coefficient functions of the inhomogeneous terms. A study of the relative influence of the particular closures used for the rapid redistribution terms and for the turbulent diffusion is undertaken, through comparison with measurements, and with a baseline Reynolds-stress model (RSM) using geometric wall normals. It is shown that wall-normal-free rsms can be reformulated as a projection on a tensorial basis that includes the inhomogeneity direction unit vector, suggesting that the theory of the redistribution tensor closure should be revised by taking into account inhomogeneity effects in the tensorial integrity basis used for its representation.
Resumo:
DASS-21 has been validated in a number of populations such as Hispanic adults, American, British and Australian. The findings show that the DASS-21 is psychometrically sound with good reliability and validity. It is clear from the literature that the DASS-21 is a well established instrument for measuring depression, anxiety and stress in the Western world. Nonetheless, the lack of appropriate validation amongst Asian populations continues to pose concerns over the use of DASS-21 in Asian samples. Cultural variation may influence the individual’s experience and emotional expression. Thus, when researchers and practitioners employ Western-based assessments with Asian populations by directly translating them without an appropriate validation, the process can be challenging. In summary, we have conducted a series of rigorous statistical tests and minimised any potential confounds from the demographic information. The advantages of this revised DASS-18 stress scale are twofold. First, the revised DASS-18 stress scale possessed fewer items, which resulted in a cleaner factorial structure. Second, it also had a smaller inter-factor correlation. With these justifications, the revised DASS-18 stress scale is potentially more suitable for the Asian populations.
Resumo:
Graphene nanoribbon (GNR) with free edges demonstrates unique pre-existing edge energy and edge stress, leading to non-flat morphologies. Using molecular dynamics (MD) methods, we evaluated edge energies as well as edge stresses for four different edge types, including regular edges (armchair and zigzag), armchair edge terminated with hydrogen and reconstructed armchair. The results showed that compressive stress exists in the regular and hydrogen-terminated edges along the edge direction. In contrast, the reconstructed armchair edge is generally subject to tension. Furthermore, we also investigated shape transition between flat and rippled configurations of GNRs with different free edges. It was found that the pre-existing stress at free edges can greatly influence the initial energy state and the shape transition.
Resumo:
Carbon fibre reinforced polymer (CFRP) sheets have many outstanding properties such as high strength, high elastic modulus, light weight and good durability which are made them a suitable alternative for steel in strengthening work. This paper describe the ultimate load carrying capacity of steel hollow sections at effective bond length in terms of its cross sectional area and the stress distribution within bond region for different layers CFRP. It was found that depending on their size and orientation of uni- directional CFRP layers, the ultimate tensile load was different. Along with these tests, non linear finite element analysis was also performed to validate the ultimate load carrying capacity depending on their cross sections. The predicted ultimate loads from FE analysis are found very close to the laboratory test results. The validated model has been used to determine the stress distribution at bond joint for different orientation of CFRP. This research shows the effect of stress distribution and suitable wrapping layer to be used for the strengthening of steel hollow sections in tension.
Resumo:
Introduction To date, there has been little systematic, quantitative research on the links between academic pressure and mental health among adolescents in Asia, and none in Vietnam. In part, this is because of a lack of appropriate tools to measure this complex phenomenon. This study was to validate the Educational Stress Scale for Adolescents (ESSA), developed and tested in China, with the aim of fostering further research in Asia. Methods A total of 1283 students were recruited in 3 secondary schools and 3 high schools in Ho Chi Minh City, Vietnam. Anonymous, selfreport questionnaires included the ESSA and previously validated measures of mental health. Results Among the 1226 questionnaires available, 54% of respondents were female. The mean age was 15.3 years. Students reported substantial study burden. The ESSA had good internal consistency, and factorial validity and concurrent validity were established. Conclusion The ESSA is a suitable measure for school-based mental health research in Asia.
Resumo:
Advanced composite materials offer remarkable potential in the strengthening of Civil Engineering structures. This research is targeted to provide in depth knowledge and understanding of bond characteristics of advanced and corrosion resistant material carbon fibre reinforced polymer (CFRP) that has a unique design tailor-ability and cost effective nature. The objective of this research is to investigate and compare the bonding mechanism between CFRP strengthened single and double strap steel joints. Investigations have been made in regards to failure mode, ultimate load and effective bond length for CFRP strengthened double and single strap joints. A series of tensile tests were conducted with different bond lengths for both type of joints. The bond behaviour of these specimens was further investigated by using nonlinear finite element analysis. Finally a bilinear relationship of shear stress-slip has been proposed by using the Finite element model for single and double strap joints.
Resumo:
We examined the influence of 3 consecutive days of high-intensity cycling on blood and urinary markers of oxidative stress. Eight highly-trained male cyclists (VO2 max 76 +/- 4 mL.kg-1.min-1; mean +/- SD) completed an interval session (9 exercise bouts lasting 30 s each, at 150% peak power output) on day 1, followed by 2 laboratory-simulated 30 km time trials on days 2 and 3. The cyclists also completed a submaximal exercise trial matched to the interval session for oxygen consumption. Blood was collected pre- and post-exercise for the determination of malondialdehyde (MDA), total antioxidant status (TAS), vitamin E, and the antioxidant enzyme activity of superoxide dismutase and glutathione peroxidase, while urine was collected for the determination of allantoin. There were significant increases in plasma MDA concentrations (p < 0.01), plasma TAS (p < 0.01), and urinary allantoin excretion (p < 0.01) following the high-intensity interval session on day 1, whereas plasma vitamin E concentration significantly decreased (p = 0.028). Post-exercise changes in plasma MDA (p = 0.036), TAS concentrations (p = 0.039), and urinary allantoin excretion (p = 0.031) were all significantly attenuated over the 3 consecutive days of exercise, whereas resting plasma TAS concentration was elevated. There were no significant changes in plasma MDA, TAS, or allantoin excretion following submaximal exercise and there were no significant changes in antioxidant enzyme activity over consecutive days of exercise or following submaximal exercise. Consecutive days of high-intensity exercise enhanced resting plasma TAS concentration and reduced the post-exercise increase in plasma MDA concentrations.
Resumo:
Interest in the relationship between inflammation and oxidative stress has increased dramatically in recent years, not only within the clinical setting but also in the fields of exercise biochemistry and immunology. Inflammation and oxidative stress share a common role in the etiology of a variety of chronic diseases. During exercise, inflammation and oxidative stress are linked via muscle metabolism and muscle damage. Because oxidative stress and inflammation have traditionally been associated with fatigue and impaired recovery from exercise, research has focused on nutritional strategies aimed at reducing these effects. In this review, we have evaluated the findings of studies involving antioxidant supplementation on alterations in markers of inflammation (e.g., cytokines, C-reactive protein and cortisol). This review focuses predominantly on the role of reactive oxygen and nitrogen species generated from muscle metabolism and muscle damage during exercise and on the modulatory effects of antioxidant supplements. Furthermore, we have analyzed the influence of factors such as the dose, timing, supplementation period and bioavailability of antioxidant nutrients.
Resumo:
Neutrophils produce free radicals known as reactive oxygen species (ROS), which assist in the clearance of damaged host tissue. Tissue damage may occur during exercise due to muscle damage, thermal stress and ischaemia/reperfusion. When produced in excess, neutrophil-derived ROS may overwhelm the body's endogenous antioxidant defence mechanisms, and this can lead to oxidative stress. There is increasing evidence for links between oxidative stress and a variety of pathological disorders such as cardiovascular diseases, cancer, chronic inflammatory diseases and post-ischaemic organ injury. A small number of studies have investigated whether there is a link between neutrophil activation and oxidative stress during exercise. In this review, we have summarised the findings of these studies. Exercise promotes the release of neutrophils into the circulation, and some evidence suggests that neutrophils mobilised after exercise have an enhanced capacity to generate some forms of ROS when stimulated in vitro. Neutrophil activation during exercise may challenge endogenous antioxidant defence mechanisms, but does not appear to increase lipid markers of oxidative stress to any significant degree, at least in the circulation. Antioxidant supplements such as N-acetylcysteine are effective at attenuating increases in the capacity of neutrophils to generate ROS when stimulated in vitro, whereas vitamin E reduces tissue infiltration of neutrophils during exercise. Free radicals generated during intense exercise may lead to DNA damage in leukocytes, but it is unknown if this damage is the result of neutrophil activation. Exercise enhances the expression of inducible haem (heme)-oxygenase (HO-1) in neutrophils after exercise, however, it is uncertain whether oxidative stress is the stimulus for this response.
Resumo:
Reactive oxygen species (ROS) are a primary cause of cellular damage that leads to cell death. In cells, protection from ROS-induced damage and maintenance of the redox balance is mediated to a large extent by selenoproteins, a distinct family of proteins that contain selenium in form of selenocysteine (Sec) within their active site. Incorporation of Sec requires the Sec-insertion sequence element (SECIS) in the 3'-untranslated region of selenoproteins mRNAs and the SECIS-binding protein 2 (SBP2). Previous studies have shown that SBP2 is required for the Sec-incorporation mechanism; however, additional roles of SBP2 in the cell have remained undefined. We herein show that depletion of SBP2 by using antisense oligonucleotides (ASOs) causes oxidative stress and induction of caspase- and cytochrome c-dependent apoptosis. Cells depleted of SBP2 have increased levels of ROS, which lead to cellular stress manifested as 8-oxo-7,8-dihydroguanine (8-oxo-dG) DNA lesions, stress granules, and lipid peroxidation. Small-molecule antioxidants N-acetylcysteine, glutathione, and α-tocopherol only marginally reduced ROS and were unable to rescue cells fully from apoptosis, indicating that apoptosis might be directly mediated by selenoproteins. Our results demonstrate that SBP2 is required for protection against ROS-induced cellular damage and cell survival. Antioxid. Redox Signal. 12, 797–808.
Resumo:
Genetically distinct checkpoints, activated as a consequence of either DNA replication arrest or ionizing radiation-induced DNA damage, integrate DNA repair responses into the cell cycle programme. The ataxia-telangiectasia mutated (ATM) protein kinase blocks cell cycle progression in response to DNA double strand breaks, whereas the related ATR is important in maintaining the integrity of the DNA replication apparatus. Here, we show that thymidine, which slows the progression of replication forks by depleting cellular pools of dCTP, induces a novel DNA damage response that, uniquely, depends on both ATM and ATR. Thymidine induces ATM-mediated phosphorylation of Chk2 and NBS1 and an ATM-independent phosphorylation of Chk1 and SMC1. AT cells exposed to thymidine showed decreased viability and failed to induce homologous recombination repair (HRR). Taken together, our results implicate ATM in the HRR-mediated rescue of replication forks impaired by thymidine treatment.