983 resultados para Princeton Ocean Model
Resumo:
Seven sites were drilled during Ocean Drilling Program Leg 177 in the Atlantic sector of the Southern Ocean (SO) on a transect over the Antarctic Circumpolar Current from the Subantarctic to the Antarctic Zone. At four sites sediments were recovered with a Pliocene/Pleistocene sediment package of up to 580 m allowing the refinement of previous diatom zonation concepts. Samples were analyzed on stratigraphic distribution and abundance of diatom species. A refined diatom biozonation tied to the geomagnetic polarity record is proposed. For the middle and late Pleistocene two zonations applicable to the northern and southern area of the SO were constructed, considering different latitudinal distributions of biostratigraphic diatom marker species. The southern zonation for the Pleistocene relies on the occurrence of species of the genus Rouxia, R. leventerae and R. constricta n. sp. as well as on a revised last occurrence datum (LOD) of Actinocyclus ingens (0.38 Ma, late marine isotope stage (MIS) 11). The use of these new stratigraphic marker species refines the temporal resolution for biostratigraphic age assignment to up to 0.1 Myr. In particular the LOD of R. leventerae as an indicator for the MIS 6/5 boundary (Termination II) will improve future dating of carbonate-free Antarctic sediments. These new data were obtained from sediments of Sites 1093 and 1094 (Antarctic Zone). The northern zonation for the middle and late Pleistocene time interval is based on the Pleistocene abundance pattern of Hemidiscus karstenii which was already proposed by previous investigations (e.g. Gersonde and Barcena, 1998). One new species (R. constricta) and two new combinations (Fragilariopsis clementia, Fragilariopsis reinholdii) are proposed in this study.
Resumo:
The muricate planktonic foraminiferal genera Morozovella and Acarinina were abundant and diverse during the upper Palaeocene to middle Eocene and dominated the tropical and subtropical assemblages. A significant biotic turnover in planktonic foraminifera occurred in the latest middle Eocene with a notable reduction in the acarininid lineage and the extinction of the morozovellids. These genera are extensively employed as palaeoclimatic and biostratigraphic markers and, therefore, this turnover episode is an important event in the record of the Cenozoic planktonic foraminifera. Sediments from the western North Atlantic (Ocean Drilling Program Site 1052) were examined in order to investigate these extinction events, in terms of both timing and mechanisms. Biostratigraphic events of the middle and late Eocene have been examined with a sampling resoluti on of approximately 3 kyr. These have been calibrated to the magneto- and astrochronology to accurately define the timing of key biostratigraphic events, particularly the extinction of Morozovella spinulosa which is a distinct biomarker for late middle Eocene sediments. High-resolution biostratigraphy reveals that the extinctions in the muricate group occurred in a stepwise form. The large acarininids (Acarinina praetopilensis) terminate 10 kyr prior to the extinction of M. spinulosa and small acarininids (Acarinina medizzai and Acarinina echinata) continue into the upper Eocene. High-resolution stable isotope analyses have been conducted on planktonic and benthic foraminifera from the western North Atlantic to reconstruct sea surface temperatures (SSTs) and deep water temperatures and the structure of the water column around this major biotic turnover. Whilst the extinctions of M. spinulosa and A. praetopilensis occur during a long-term cooling trend, the biotic turnover in the muricate group does not appear to be related to significant climatic change. Sea surface temperatures decrease slowly prior to the extinction events, and there is no evidence for a large-temperature shift associated with the faunal changes. The turnover event was therefore probably related to the increased surface water productivity and the deterioration of photosymbiotic partnerships with algae.
Resumo:
A multiproxy study of palaeoceanographic and climatic changes in northernmost Baffin Bay shows that major environmental changes have occurred since the deglaciation of the area at about 12 500 cal. yr BP. The interpretation is based on sedimentology, benthic and planktonic foraminifera and their isotopic composition, as well as diatom assemblages in the sedimentary records at two core sites, one located in the deeper central part of northernmost Baffin Bay and one in a separate trough closer to the Greenland coast. A revised chronology for the two records is established on the basis of 15 previously published AMS 14C age determinations. A basal diamicton is overlain by laminated, fossil-free sediments. Our data from the early part of the fossiliferous record (12 300 - 11 300 cal. yr BP), which is also initially laminated, indicate extensive seasonal sea-ice cover and brine release. There is indication of a cooling event between 11 300 and 10 900 cal. yr BP, and maximum Atlantic Water influence occurred between 10 900 and 8200 cal. yr BP (no sediment recovery between 8200 and 7300 cal. yr BP). A gradual, but fluctuating, increase in sea-ice cover is seen after 7300 cal. yr BP. Sea-ice diatoms were particularly abundant in the central part of northernmost Baffin Bay, presumably due to the inflow of Polar waters from the Arctic Ocean, and less sea ice occurred at the near-coastal site, which was under continuous influence of the West Greenland Current. Our data from the deep, central part show a fluctuating degree of upwelling after c. 7300 cal. yr BP, culminating between 4000 and 3050 cal. yr BP. There was a gradual increase in the influence of cold bottom waters from the Arctic Ocean after about 3050 cal. yr BP, when agglutinated foraminifera became abundant. A superimposed short-term change in the sea-surface proxies is correlated with the Little Ice Age cooling.
Resumo:
Recent geochemical models invoke ocean alkalinity changes, particularly in the surface Southern Ocean, to explain glacial age pCO2 reduction. In such models, alkalinity increases in glacial periods are driven by reductions in North Atlantic Deep Water (NADW) supply, which lead to increases in deep-water nutrients and dissolution of carbonate sediments, and to increased alkalinity of Circumpolar Deep Water upwelling in the surface Southern Ocean. We use cores from the Southeast Indian Ridge and from the deep Cape Basin in the South Atlantic to show that carbonate dissolution was enhanced during glacial stages in areas now bathed by Circumpolar Deep Water. This suggests that deep Southern Ocean carbonate ion concentrations were lower in glacial stages than in interglacials, rather than higher as suggested by the polar alkalinity model [Broecker and Peng, 1989, doi:10.1029/GB001i001p00015]. Our observations show that changes in Southern Ocean CaCO3 preservation are coherent with changes in the relative flux of NADW, suggesting that Southern Ocean carbonate chemistry is closely linked to changes in deepwater circulation. The pattern of enhanced dissolution in glacials is consistent with a reduction in the supply of nutrient-depleted water (NADW) to the Southern Ocean and with an increase of nutrients in deep water masses. Carbonate mass accumulation rates on the Southeast Indian Ridge (3200-3800 m), and in relatively shallow cores (<3000 m) from the Kerguelen Plateau and the South Pacific were significantly reduced during glacial stages, by about 50%. The reduced carbonate mass accumulation rates and enhanced dissolution during glacials may be partly due to decreases in CaCO3:Corg flux ratios, acting as another mechanism which would raise the alkalinity of Southern Ocean surface waters. The polar alkalinity model assumes that the ratio of organic carbon to carbonate production on surface alkalinity is constant. Even if overall productivity in the Southern Ocean were held constant, a decrease in the CaCO3:Corg ratio would result in increased alkalinity and reduced pCO2 in Southern Ocean surface waters during glacials. This ecologically driven surface alkalinity change may enhance deepwater-mediated changes in alkalinity, and amplify rapid changes in pCO2.
Resumo:
Sediment samples from ODP Site 1085 were investigated in order to obtain more information on the initiation and development of the Benguela upwelling system during the middle and upper Miocene. In particular, our intent was to establish the causes of the upwelling as well as the response of the upwelling regime to the development of the Antarctic Circumpolar Current. Based on changes in the calcareous dinoflagellate cyst association, we found an initial increase of the dinoflagellate cyst productivity, probably related to the initiation of upwelling about 11.8 Ma ago. Two distinct increases in cyst productivity in conjunction with temperature decreases of the upper water masses reflect upwelling pulses off Namibia and occur at the end of the Miocene cooling events Mi5 (about 11.5 Ma) and Mi6 (about 10.5 Ma). Both cooling events are associated with an ice volume increase in Antarctica and are thought to have led to an increase in southeasterly winds, possibly causing these two upwelling pulses. We demonstrate a decrease in dinoflagellate cyst productivity and enhanced terrigenous input via the Orange River after the Mi5 event. At about 11.1 Ma, the dinoflagellate cyst productivity increases again. The polar cyst species Caracomia arctica occurs here for the first time. This implies an influence of subantarctic mode water and therefore a change in the quality of the upwelling water which allowed the Benguela upwelling to develop into modern conditions. From about 10.4 Ma, C. arctica forms a permanent part of the association, pointing to an establishment of the upwelling regime.
Resumo:
A down-core 231Pa/230Th record has been measured from the southwestern Indian Ocean to reconstruct the history of deep water flow into this basin over the last glacial-interglacial cycle. The (231Paxs/230Thxs)0 ratio throughout the record is nearly constant at approximately 0.055, significantly lower than the production ratio of 0.093, indicating that the proxy is sensitive to changes in circulation and/or sediment flux at this site. The consistent value suggests that there has been no change in the inflow of Antarctic Bottom Water to the Indian Ocean during the last 140 ka, in contrast to the changes in deep circulation thought to occur in other ocean basins. The stability of the (231Paxs/230Thxs)0 value in the record contrasts with an existing sortable silt (SS) record from the same core. The observed equation image variability is attributed to a local geostrophic effect amplifying small changes in circulation. A record of authigenic U from the same core suggests that there was reduced oxygen in bottom waters at the core locality during glacial periods. The consistency of the (231Paxs/230Thxs)0 record implies that this could not have arisen by local changes in productivity, thus suggesting a far-field control: either globally reduced bottom water oxygenation or increased productivity south of the Opal Belt during glacials.
Resumo:
Modern thermohaline circulation plays a role in latitudinal heat transport and in deep-ocean ventilation, yet ocean circulation may have functioned differently during past periods of extreme warmth, such as the Cretaceous. The Late Cretaceous (100-65 Ma) was an important period in the evolution of the North Atlantic Ocean, characterized by opening ocean gateways, long-term climatic cooling and the cessation of intermittent periods of anoxia (oceanic anoxic events, OAEs). However, how these phenomena relate to deep-water circulation is unclear. We use a proxy for deep-water mass composition (neodymium isotopes; e-Nd) to show that, at North Atlantic ODP Site 1276, deep waters shifted in the early Campanian (~78-83 Ma) from e-Nd values of ~-7 to values of ~-9, consistent with a change in the style of deep-ocean circulation but >10 Myr after a change in bottom water oxygenation conditions. A similar, but more poorly dated, trend exists in e-Nd data from DSDP Site 386. The Campanian e-Nd transition observed in the North Atlantic records is also seen in the South Atlantic and proto-Indian Ocean, implying a widespread and synchronous change in deep-ocean circulation. Although a unique explanation does not exist for the change at present, we favor an interpretation that invokes Late Cretaceous climatic cooling as a driver for the formation of Southern Component Water, which flowed northward from the Southern Ocean and into the North Atlantic and proto-Indian Oceans.
Resumo:
The basalts and oceanic andesites from the aseismic Ninetyeast Ridge display trachytic, vesicular and amygdaloidal textures suggesting a subaerial volcanic environment. The normative composition of the Ninetyeast Ridge ranges from olivine picriteto nepheline-normative alkaline basalt, suggesting a wide range of differentiation. This is further supported by the fractionation-differentiation trends displayed by transition metal trace elements (Ni, Cr, V and Cu). The Ninetyeast Ridge rocks are enriched in rare earth (RE) and large ion lithophile (LIL) elements and Sr isotopes (0.7043-0.7049), similar to alkali basalts and tholeiites from seamounts and islands, but different from LIL-element-depleted tholeiitic volcanic rocks of the recent seismic mid-Indian oceanic ridge. The constancy of 87Sr/86Sr ratios for basalts and andesites is compatible with a model involving fractional crystallization of mafic magma. The variation of 87Sr/86Sr ratios between 0.97 and 2.79 may possibly be explained in terms of a primordial hot mantle and/or chemically contrasting heterogeneous mantle source layers relatively undepleted in LIL elements at different periods in the geologic past. In general, the Sr isotopic data for rocks from different tectonic environments are consistent with a "zoning-depletion model" with systematically arranged alternate alkali-poor and alkali-rich layers in the mantle beneath the Indian Ocean.
Resumo:
Pteropods are a group of holoplanktonic gastropods for which global biomass distribution patterns remain poorly resolved. The aim of this study was to collect and synthesize existing pteropod (Gymnosomata, Thecosomata and Pseudothecosomata) abundance and biomass data, in order to evaluate the global distribution of pteropod carbon biomass, with a particular emphasis on its seasonal, temporal and vertical patterns. We collected 25 902 data points from several online databases and a number of scientific articles. The biomass data has been gridded onto a 360 x 180° grid, with a vertical resolution of 33 WOA depth levels. Data has been converted to NetCDF format. Data were collected between 1951-2010, with sampling depths ranging from 0-1000 m. Pteropod biomass data was either extracted directly or derived through converting abundance to biomass with pteropod specific length to weight conversions. In the Northern Hemisphere (NH) the data were distributed evenly throughout the year, whereas sampling in the Southern Hemisphere was biased towards the austral summer months. 86% of all biomass values were located in the NH, most (42%) within the latitudinal band of 30-50° N. The range of global biomass values spanned over three orders of magnitude, with a mean and median biomass concentration of 8.2 mg C l-1 (SD = 61.4) and 0.25 mg C l-1, respectively for all data points, and with a mean of 9.1 mg C l-1 (SD = 64.8) and a median of 0.25 mg C l-1 for non-zero biomass values. The highest mean and median biomass concentrations were located in the NH between 40-50° S (mean biomass: 68.8 mg C l-1 (SD = 213.4) median biomass: 2.5 mg C l-1) while, in the SH, they were within the 70-80° S latitudinal band (mean: 10.5 mg C l-1 (SD = 38.8) and median: 0.2 mg C l-1). Biomass values were lowest in the equatorial regions. A broad range of biomass concentrations was observed at all depths, with the biomass peak located in the surface layer (0-25 m) and values generally decreasing with depth. However, biomass peaks were located at different depths in different ocean basins: 0-25 m depth in the N Atlantic, 50-100 m in the Pacific, 100-200 m in the Arctic, 200-500 m in the Brazilian region and >500 m in the Indo-Pacific region. Biomass in the NH was relatively invariant over the seasonal cycle, but more seasonally variable in the SH. The collected database provides a valuable tool for modellers for the study of ecosystem processes and global biogeochemical cycles.
Resumo:
Carbon isotopic records from benthic foraminifera are used to map patterns of deep ocean circulation between 3 and 2 million years ago, the interval when significant northern hemisphere glaciation began. The delta18O and delta13C data from four Atlantic sites (552, 607, 610, and 704) and one Pacific site (677) show that global cooling over this interval was associated with increased suppression of North Atlantic Deep Water (NADW) formation. However, the relative strength of NADW production was always greater than is observed during late Pleistocene glaciations when extreme decreases in NADW are observed in the deep North Atlantic. Our data indicate that an increase in the equator-to-pole temperature gradient associated with the onset of northern hemisphere glaciation did not intensify deepwater production in the North Atlantic but rather the opposite occurred. This is not unexpected as it is the "warm high-salinity" characteristic, rather than the "low temperature", of thermocline waters that is critical to the deepwater formation process in this region today.
Chemical composition and isotopic ratios of basic lavas from Iceland and the surrounding ocean floor
Resumo:
Major and trace dement data are used to establish the nature and extent of spatial and temporal chemical variations in basalts erupted in the Iceland region of the North Atlantic Ocean. The ocean floor samples are those recovered by legs 38 and 49 of the Deep Sea Drilling Project. Within each of the active zones on Iceland there are small scale variations in the light rare earth elements and ratios such as K/Y: several central complexes and their associated fissure swarms erupt basalts with values of K/Y distinct from those erupted at adjacent centres; also basalts showing a wide range of immobile trace element ratios occur together within single vertical sections and ocean floor drill holes. Although such variations can be explained in terms of the magmatic processes operating on Iceland they make extrapolations from single basalt samples to mantle sources underlying the outcrop of the sample highly tenuous. 87Sr/86Sr ratios measured for 25 of the samples indicate a total range from 0.7028 in a tholeiite from the Reykjanes Ridge to 0.7034 in an alkali basalt from Iceland and are consistent with other published ratios from the region. A positive correlation between 87Sr/86Sr and Ce/Yb ratios indicates the existence of systematic isotopic and elemental variations in the mantle source region. An approximately fivefold variation in Ce/Yb ratio observed in basalts with the same 87Sr/86Sr ratio implies that different degrees and types of partial melting have been involved in magma genesis from a single mantle composition. 87Sr/86Sr ratios above 0.7028, Th/U ratios close to 4 and La/Ta ratios close to 10 distinguish most basalts erupted in this part of the North Atlantic Ocean from normal mid-ocean ridge basalt (N-type MORB) - although N-type MORB has been erupted at extinct spreading axes just to the north and northeast of Iceland as well as the presently active Iceland-Jan Mayen Ridge. Comparisons with the hygromagmatophile element and radiogenic isotope ratios of MORB and the estimated primordial mantle indicate that the mantle sources producing Iceland basalts have undergone previous depletion followed by more recent enrichment events. A veined mantle source region is proposed in preference to the mantle plume model to explain the chemical variations.
Resumo:
This study provides a theoretical assessment of the potential bias due to differential lateral transport on multi-proxy studies based on a range of marine microfossils. Microfossils preserved in marine sediments are at the centre of numerous proxies for paleoenvironmental reconstructions. The precision of proxies is based on the assumption that they accurately represent the overlying watercolumn properties and faunas. Here we assess the possibility of a syn-depositional bias in sediment assemblages caused by horizontal drift in the water column, due to differential settling velocities of sedimenting particles based on their shape, size and density, and due to differences in current velocities. Specifically we calculate the post-mortem lateral transport undergone by planktic foraminifera and a range of other biological proxy carriers (diatoms, radiolaria and fecal pellets transporting coccolithophores) in several regions with high current velocities. We find that lateral transport of different planktic foraminiferal species is minimal due to high settling velocities. No significant shape- or size-dependent sorting occurs before reaching the sediment, making planktic foraminiferal ideal proxy carriers. In contrast, diatoms, radiolaria and fecal pellets can be transported up to 500km in some areas. For example in the Agulhas current, transport can lead to differences of up to 2°C in temperature reconstructions between different proxies in response to settling velocities. Therefore, sediment samples are likely to contain different proportions of local and imported particles, decreasing the precision of proxies based on these groups and the accuracy of the temperature reconstruction.