871 resultados para Prediction model
Resumo:
Patent and trademark offices which run according to principles of new management have an inherent need for dependable forecasting data in planning capacity and service levels. The ability of the Spanish Office of Patents and Trademarks to carry out efficient planning of its resource needs requires the use of methods which allow it to predict the changes in the number of patent and trademark applications at different time horizons. The approach for the prediction of time series of Spanish patents and trademarks applications (1979e2009) was based on the use of different techniques of time series prediction in a short-term horizon. The methods used can be grouped into two specifics areas: regression models of trends and time series models. The results of this study show that it is possible to model the series of patents and trademarks applications with different models, especially ARIMA, with satisfactory model adjustment and relatively low error.
Resumo:
Most empirical disciplines promote the reuse and sharing of datasets, as it leads to greater possibility of replication. While this is increasingly the case in Empirical Software Engineering, some of the most popular bug-fix datasets are now known to be biased. This raises two significants concerns: first, that sample bias may lead to underperforming prediction models, and second, that the external validity of the studies based on biased datasets may be suspect. This issue has raised considerable consternation in the ESE literature in recent years. However, there is a confounding factor of these datasets that has not been examined carefully: size. Biased datasets are sampling only some of the data that could be sampled, and doing so in a biased fashion; but biased samples could be smaller, or larger. Smaller data sets in general provide less reliable bases for estimating models, and thus could lead to inferior model performance. In this setting, we ask the question, what affects performance more? bias, or size? We conduct a detailed, large-scale meta-analysis, using simulated datasets sampled with bias from a high-quality dataset which is relatively free of bias. Our results suggest that size always matters just as much bias direction, and in fact much more than bias direction when considering information-retrieval measures such as AUC and F-score. This indicates that at least for prediction models, even when dealing with sampling bias, simply finding larger samples can sometimes be sufficient. Our analysis also exposes the complexity of the bias issue, and raises further issues to be explored in the future.
Resumo:
This paper investigates the propagation of airblast or pressure waves in air produced by bench blasting (i.e. detonation of the explosive in a row of blastholes, breaking the burden of rock towards the free vertical face of the block). Peak overpressure is calculated as a function of blasting parameters (explosive mass per delay and velocity at which the detonation sequence proceeds along the bench) and the polar coordinates of the position of interest (distance to the source and azimuth with respect to the free face). The model has been fitted to empirical data using linear least squares. The data set is composed of 122 airblast records monitored at distances less than 400 m in 41 production blasts carried out in two quarries. The model is statistically significant and has a determination coefficient of 0.87. The formula is validated from 12 airblast measurements gathered in five additional blasts.
Resumo:
Detecting user affect automatically during real-time conversation is the main challenge towards our greater aim of infusing social intelligence into a natural-language mixed-initiative High-Fidelity (Hi-Fi) audio control spoken dialog agent. In recent years, studies on affect detection from voice have moved on to using realistic, non-acted data, which is subtler. However, it is more challenging to perceive subtler emotions and this is demonstrated in tasks such as labelling and machine prediction. This paper attempts to address part of this challenge by considering the role of user satisfaction ratings and also conversational/dialog features in discriminating contentment and frustration, two types of emotions that are known to be prevalent within spoken human-computer interaction. However, given the laboratory constraints, users might be positively biased when rating the system, indirectly making the reliability of the satisfaction data questionable. Machine learning experiments were conducted on two datasets, users and annotators, which were then compared in order to assess the reliability of these datasets. Our results indicated that standard classifiers were significantly more successful in discriminating the abovementioned emotions and their intensities (reflected by user satisfaction ratings) from annotator data than from user data. These results corroborated that: first, satisfaction data could be used directly as an alternative target variable to model affect, and that they could be predicted exclusively by dialog features. Second, these were only true when trying to predict the abovementioned emotions using annotator?s data, suggesting that user bias does exist in a laboratory-led evaluation.
Resumo:
The behavior of quantum dot, quantum wire, and quantum well InAs/GaAs solar cells is studied with a very simplified model based on experimental results in order to assess their performance as a function of the low bandgap material volume fraction fLOW. The efficiency of structured devices is found to exceed the efficiency of a non-structured GaAs cell, in particular under concentration, when fLOW is high; this condition is easier to achieve with quantum wells. If three different quasi Fermi levels appear with quantum dots the efficiency can be much higher.
Resumo:
This work evaluates a spline-based smoothing method applied to the output of a glucose predictor. Methods:Our on-line prediction algorithm is based on a neural network model (NNM). We trained/validated the NNM with a prediction horizon of 30 minutes using 39/54 profiles of patients monitored with the Guardian® Real-Time continuous glucose monitoring system The NNM output is smoothed by fitting a causal cubic spline. The assessment parameters are the error (RMSE), mean delay (MD) and the high-frequency noise (HFCrms). The HFCrms is the root-mean-square values of the high-frequency components isolated with a zero-delay non-causal filter. HFCrms is 2.90±1.37 (mg/dl) for the original profiles.
Resumo:
The estimation of power losses due to wind turbine wakes is crucial to understanding overall wind farm economics. This is especially true for large offshore wind farms, as it represents the primary source of losses in available power, given the regular arrangement of rotors, their generally largerdiameter and the lower ambient turbulence level, all of which conspire to dramatically affect wake expansion and, consequently, the power deficit. Simulation of wake effects in offshore wind farms (in reasonable computational time) is currently feasible using CFD tools. An elliptic CFD model basedon the actuator disk method and various RANS turbulence closure schemes is tested and validated using power ratios extracted from Horns Rev and Nysted wind farms, collected as part of the EU-funded UPWIND project. The primary focus of the present work is on turbulence modeling, as turbulent mixing is the main mechanism for flow recovery inside wind farms. A higher-order approach, based on the anisotropic RSM model, is tested to better take into account the imbalance in the length scales inside and outside of the wake, not well reproduced by current two-equation closure schemes.
Resumo:
The present article shows a procedure to predict the flutter speed based on real-time tuning of a quasi non-linear aeroelastic model. A two-dimensional non-linear (freeplay) aeroeslastic model is implemented inMatLab/Simulink with incompressible aerodynamic conditions. A comparison with real compressible conditions is provided. Once the numerical validation is accomplished, a parametric aeroelastic model is built in order to describe the proposed procedure and contribute to reduce the number of flight hours needed to expand the flutter envelope.
Resumo:
During the last two decades the topic of human induced vibration has attracted a lot of attention among civil engineering practitioners and academics alike. Usually this type of problem may be encountered in pedestrian footbridges or floors of paperless offices. Slender designs are becoming increasingly popular, and as a consequence, the importance of paying attention to vibration serviceability also increases. This paper resumes the results obtained from measurements taken at different points of an aluminium catwalk which is 6 m in length by 0.6 m in width. Measurements were carried out when subjecting the structure to different actions:1)Static test: a steel cylinder of 35 kg was placed in the middle of the catwalk; 2)Dynamic test: this test consists of exciting the structure with singles impulses; 3)Dynamic test: people walking on the catwalk. Identification of the mechanical properties of the structure is an achievement of the paper. Indirect methods were used to estimate properties including the support stiffness, the beam bending stiffness, the mass of the structure (using Rayleigh method and iterative matrix method), the natural frequency (using the time domain and frequency domain analysis) and the damping ratio (by calculating the logarithmic decrement). Experimental results and numerical predictions for the response of an aluminium catwalk subjected to walking loads have been compared. The damping of this light weight structure depends on the amplitude of vibration which complicates the tuning of a structural model. In the light of the results obtained it seems that the used walking load model is not appropriate as the predicted transient vibration values (TTVs) are much higher than the measured ones.
Resumo:
We apply diffusion strategies to propose a cooperative reinforcement learning algorithm, in which agents in a network communicate with their neighbors to improve predictions about their environment. The algorithm is suitable to learn off-policy even in large state spaces. We provide a mean-square-error performance analysis under constant step-sizes. The gain of cooperation in the form of more stability and less bias and variance in the prediction error, is illustrated in the context of a classical model. We show that the improvement in performance is especially significant when the behavior policy of the agents is different from the target policy under evaluation.
Resumo:
Outline: • Introduction • Numerical model SHOCKLAS© • Single LSP pulses • Overlapped LSP pulses • Discussion and Outlook
Resumo:
In the last few years there has been a heightened interest in data treatment and analysis with the aim of discovering hidden knowledge and eliciting relationships and patterns within this data. Data mining techniques (also known as Knowledge Discovery in Databases) have been applied over a wide range of fields such as marketing, investment, fraud detection, manufacturing, telecommunications and health. In this study, well-known data mining techniques such as artificial neural networks (ANN), genetic programming (GP), forward selection linear regression (LR) and k-means clustering techniques, are proposed to the health and sports community in order to aid with resistance training prescription. Appropriate resistance training prescription is effective for developing fitness, health and for enhancing general quality of life. Resistance exercise intensity is commonly prescribed as a percent of the one repetition maximum. 1RM, dynamic muscular strength, one repetition maximum or one execution maximum, is operationally defined as the heaviest load that can be moved over a specific range of motion, one time and with correct performance. The safety of the 1RM assessment has been questioned as such an enormous effort may lead to muscular injury. Prediction equations could help to tackle the problem of predicting the 1RM from submaximal loads, in order to avoid or at least, reduce the associated risks. We built different models from data on 30 men who performed up to 5 sets to exhaustion at different percentages of the 1RM in the bench press action, until reaching their actual 1RM. Also, a comparison of different existing prediction equations is carried out. The LR model seems to outperform the ANN and GP models for the 1RM prediction in the range between 1 and 10 repetitions. At 75% of the 1RM some subjects (n = 5) could perform 13 repetitions with proper technique in the bench press action, whilst other subjects (n = 20) performed statistically significant (p < 0:05) more repetitions at 70% than at 75% of their actual 1RM in the bench press action. Rate of perceived exertion (RPE) seems not to be a good predictor for 1RM when all the sets are performed until exhaustion, as no significant differences (p < 0:05) were found in the RPE at 75%, 80% and 90% of the 1RM. Also, years of experience and weekly hours of strength training are better correlated to 1RM (p < 0:05) than body weight. O'Connor et al. 1RM prediction equation seems to arise from the data gathered and seems to be the most accurate 1RM prediction equation from those proposed in literature and used in this study. Epley's 1RM prediction equation is reproduced by means of data simulation from 1RM literature equations. Finally, future lines of research are proposed related to the problem of the 1RM prediction by means of genetic algorithms, neural networks and clustering techniques. RESUMEN En los últimos años ha habido un creciente interés en el tratamiento y análisis de datos con el propósito de descubrir relaciones, patrones y conocimiento oculto en los mismos. Las técnicas de data mining (también llamadas de \Descubrimiento de conocimiento en bases de datos\) se han aplicado consistentemente a lo gran de un gran espectro de áreas como el marketing, inversiones, detección de fraude, producción industrial, telecomunicaciones y salud. En este estudio, técnicas bien conocidas de data mining como las redes neuronales artificiales (ANN), programación genética (GP), regresión lineal con selección hacia adelante (LR) y la técnica de clustering k-means, se proponen a la comunidad del deporte y la salud con el objetivo de ayudar con la prescripción del entrenamiento de fuerza. Una apropiada prescripción de entrenamiento de fuerza es efectiva no solo para mejorar el estado de forma general, sino para mejorar la salud e incrementar la calidad de vida. La intensidad en un ejercicio de fuerza se prescribe generalmente como un porcentaje de la repetición máxima. 1RM, fuerza muscular dinámica, una repetición máxima o una ejecución máxima, se define operacionalmente como la carga máxima que puede ser movida en un rango de movimiento específico, una vez y con una técnica correcta. La seguridad de las pruebas de 1RM ha sido cuestionada debido a que el gran esfuerzo requerido para llevarlas a cabo puede derivar en serias lesiones musculares. Las ecuaciones predictivas pueden ayudar a atajar el problema de la predicción de la 1RM con cargas sub-máximas y son empleadas con el propósito de eliminar o al menos, reducir los riesgos asociados. En este estudio, se construyeron distintos modelos a partir de los datos recogidos de 30 hombres que realizaron hasta 5 series al fallo en el ejercicio press de banca a distintos porcentajes de la 1RM, hasta llegar a su 1RM real. También se muestra una comparación de algunas de las distintas ecuaciones de predicción propuestas con anterioridad. El modelo LR parece superar a los modelos ANN y GP para la predicción de la 1RM entre 1 y 10 repeticiones. Al 75% de la 1RM algunos sujetos (n = 5) pudieron realizar 13 repeticiones con una técnica apropiada en el ejercicio press de banca, mientras que otros (n = 20) realizaron significativamente (p < 0:05) más repeticiones al 70% que al 75% de su 1RM en el press de banca. El ínndice de esfuerzo percibido (RPE) parece no ser un buen predictor del 1RM cuando todas las series se realizan al fallo, puesto que no existen diferencias signifiativas (p < 0:05) en el RPE al 75%, 80% y el 90% de la 1RM. Además, los años de experiencia y las horas semanales dedicadas al entrenamiento de fuerza están más correlacionadas con la 1RM (p < 0:05) que el peso corporal. La ecuación de O'Connor et al. parece surgir de los datos recogidos y parece ser la ecuación de predicción de 1RM más precisa de aquellas propuestas en la literatura y empleadas en este estudio. La ecuación de predicción de la 1RM de Epley es reproducida mediante simulación de datos a partir de algunas ecuaciones de predicción de la 1RM propuestas con anterioridad. Finalmente, se proponen futuras líneas de investigación relacionadas con el problema de la predicción de la 1RM mediante algoritmos genéticos, redes neuronales y técnicas de clustering.
Resumo:
Crowd induced dynamic loading in large structures, such as gymnasiums or stadium, is usually modelled as a series of harmonic loads which are defined in terms of their Fourier coefficients. Different values of these coefficients that were obtained from full scale measurements can be found in codes. Recently, an alternative has been proposed, based on random generation of load time histories that take into account phase lag among individuals inside the crowd. This paper presents the testing done on a structure designed to be a gymnasium. Two series of dynamic test were performed on the gym slab. For the first test an electrodynamic shaker was placed at several locations and during the second one people located inside a marked area bounced and jumped guided by different metronome rates. A finite element model (FEM) is presented and a comparison of numerically predicted and experimentally observed vibration modes and frequencies has been used to assess its validity. The second group of measurements will be compared with predictions made using the FEM model and three alternatives for crowd induced load modelling.
Resumo:
Using the Bayesian approach as the model selection criteria, the main purpose in this study is to establish a practical road accident model that can provide a better interpretation and prediction performance. For this purpose we are using a structural explanatory model with autoregressive error term. The model estimation is carried out through Bayesian inference and the best model is selected based on the goodness of fit measures. To cross validate the model estimation further prediction analysis were done. As the road safety measures the number of fatal accidents in Spain, during 2000-2011 were employed. The results of the variable selection process show that the factors explaining fatal road accidents are mainly exposure, economic factors, and surveillance and legislative measures. The model selection shows that the impact of economic factors on fatal accidents during the period under study has been higher compared to surveillance and legislative measures.
Resumo:
A coupled elastoplastic-damage constitutive model with Lode angle dependent failure criterion for high strain and ballistic applications is presented. A Lode angle dependent function is added to the equivalent plastic strain to failure definition of the Johnson–Cook failure criterion. The weakening in the elastic law and in the Johnson–Cook-like constitutive relation implicitly introduces the Lode angle dependency in the elastoplastic behaviour. The material model is calibrated for precipitation hardened Inconel 718 nickel-base superalloy. The combination of a Lode angle dependent failure criterion with weakened constitutive equations is proven to predict fracture patterns of the mechanical tests performed and provide reliable results. Additionally, the mesh size dependency on the prediction of the fracture patterns was studied, showing that was crucial to predict such patterns