991 resultados para Power measurement
Resumo:
Double Degree. A Work Project presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA- School of Business and Economics and a Masters Degree in Business Engineering from Louvain school of Management
Resumo:
In any business it is very important to measure the performance and it helps to select key information to make better decisions on time. This research focuses on the design and implementation of a performance measurement system in a Portuguese medium size firm operating in the specialized health care transformation vehicles industry. From the evidence that outputs from Auto Ribeiro’s current information system is misaligned with the company’s objectives and strategy, this research tries to solve this business problem through the development of a Balanced Scorecard analysis, although there are some issues, which deserve further development.
Resumo:
Major in Competition and Regulation
Resumo:
In the latest years the wind energy sector experienced an exponential growth all over the world. What started as a deployment of onshore projects, soon moved to offshore and, more recently to the urban environment within the context of smart cities and renewable micro-generation. However, urban wind projects using micro turbines do not have enough profit margins to enable the setup of comprehensive and expensive measurement campaigns, a standard procedure for the deployment of large wind parks. To respond to the wind assessment needs of the future smart cities a new and simple methodology for urban wind resource assessment was developed. This methodology is based on the construction of a surface involving a built area in order to estimate the wind potential by treating it as very complex orography. This is a straightforward methodology that allows estimating the sustainable urban wind potential, being suitable to map the urban wind resource in large areas. The methodology was applied to a case study and the results enabled the wind potential assessment of a large urban area being consistent with experimental data obtained in the case study area, with maximum deviations of the order of 10% (mean wind speed) and 20% (power density).
Resumo:
This paper analyses the boundaries of simplified wind turbine models used to represent the behavior of wind turbines in order to conduct power system stability studies. Based on experimental measurements, the response of recent simplified (also known as generic) wind turbine models that are currently being developed by the International Standard IEC 61400-27 is compared to complex detailed models elaborated by wind turbine manufacturers. This International Standard, whose Technical Committee was convened in October 2009, is focused on defining generic simulation models for both wind turbines (Part 1) and wind farms (Part 2). The results of this work provide an improved understanding of the usability of generic models for conducting power system simulations.
Resumo:
A potentially renewable and sustainable source of energy is the chemical energy associated with solvation of salts. Mixing of two aqueous streams with different saline concentrations is spontaneous and releases energy. The global theoretically obtainable power from salinity gradient energy due to World’s rivers discharge into the oceans has been estimated to be within the range of 1.4-2.6 TW. Reverse electrodialysis (RED) is one of the emerging, membrane-based, technologies for harvesting the salinity gradient energy. A common RED stack is composed by alternately-arranged cation- and anion-exchange membranes, stacked between two electrodes. The compartments between the membranes are alternately fed with concentrated (e.g., sea water) and dilute (e.g., river water) saline solutions. Migration of the respective counter-ions through the membranes leads to ionic current between the electrodes, where an appropriate redox pair converts the chemical salinity gradient energy into electrical energy. Given the importance of the need for new sources of energy for power generation, the present study aims at better understanding and solving current challenges, associated with the RED stack design, fluid dynamics, ionic mass transfer and long-term RED stack performance with natural saline solutions as feedwaters. Chronopotentiometry was used to determinate diffusion boundary layer (DBL) thickness from diffusion relaxation data and the flow entrance effects on mass transfer were found to avail a power generation increase in RED stacks. Increasing the linear flow velocity also leads to a decrease of DBL thickness but on the cost of a higher pressure drop. Pressure drop inside RED stacks was successfully simulated by the developed mathematical model, in which contribution of several pressure drops, that until now have not been considered, was included. The effect of each pressure drop on the RED stack performance was identified and rationalized and guidelines for planning and/or optimization of RED stacks were derived. The design of new profiled membranes, with a chevron corrugation structure, was proposed using computational fluid dynamics (CFD) modeling. The performance of the suggested corrugation geometry was compared with the already existing ones, as well as with the use of conductive and non-conductive spacers. According to the estimations, use of chevron structures grants the highest net power density values, at the best compromise between the mass transfer coefficient and the pressure drop values. Finally, long-term experiments with natural waters were performed, during which fouling was experienced. For the first time, 2D fluorescence spectroscopy was used to monitor RED stack performance, with a dedicated focus on following fouling on ion-exchange membrane surfaces. To extract relevant information from fluorescence spectra, parallel factor analysis (PARAFAC) was performed. Moreover, the information obtained was then used to predict net power density, stack electric resistance and pressure drop by multivariate statistical models based on projection to latent structures (PLS) modeling. The use in such models of 2D fluorescence data, containing hidden, but extractable by PARAFAC, information about fouling on membrane surfaces, considerably improved the models fitting to the experimental data.
Resumo:
UNL - NSBE
Resumo:
An energy harvesting system requires an energy storing device to store the energy retrieved from the surrounding environment. This can either be a rechargeable battery or a supercapcitor. Due to the limited lifetime of rechargeable batteries, they need to be periodically replaced. Therefore, a supercapacitor, which has ideally a limitless number of charge/discharge cycles can be used to store the energy; however, a voltage regulator is required to obtain a constant output voltage as the supercapacitor discharges. This can be implemented by a Switched-Capacitor DC-DC converter which allows a complete integration in CMOS technology, although it requires several topologies in order to obtain a high efficiency. This thesis presents the complete analysis of four different topologies in order to determine expressions that allow to design and determine the optimum input voltage ranges for each topology. To better understand the parasitic effects, the implementation of the capacitors and the non-ideal effect of the switches, in 130 nm technology, were carefully studied. With these two analysis a multi-ratio SC DC-DC converter was designed with an output power of 2 mW, maximum efficiency of 77%, and a maximum output ripple, in the steady state, of 23 mV; for an input voltage swing of 2.3 V to 0.85 V. This proposed converter has four operation states that perform the conversion ratios of 1/2, 2/3, 1/1 and 3/2 and its clock frequency is automatically adjusted to produce a stable output voltage of 1 V. These features are implemented through two distinct controller circuits that use asynchronous time machines (ASM) to dynamically adjust the clock frequency and to select the active state of the converter. All the theoretical expressions as well as the behaviour of the whole system was verified using electrical simulations.
Resumo:
The evolution of receiver architectures, built in modern CMOS technologies, allows the design of high efficient receivers. A key block in modern receivers is the oscillator. The main objective of this thesis is to design a very low power and low area 8-Phase Ring Oscillator for biomedical applications (ISM and WMTS bands). Oscillators with multiphase outputs and variable duty cycles are required. In this thesis we are focused in 12.5% and 50% duty-cycles approaches. The proposed circuit uses eight inverters in a ring structure, in order to generate the output duty cycle of 50%. The duty cycle of 1/8 is achieved through the combination of the longer duty cycle signals in pairs, using, for this purpose, NAND gates. Since the general application are not only the wireless communications context, as well as industrial, scientific and medical plans, the 8-Phase Oscillator is simulated to be wideband between 100 MHz and 1 GHz, and be able to operate in the ISM bands (447 MHz-930 MHz) and WMTS (600 MHz). The circuit prototype is designed in UMC 130 nm CMOS technology. The maximum value of current drawn from a DC power source of 1.2 V, at a maximum frequency of 930 MHz achieved, is 17.54 mA. After completion of the oscillator layout studied (occupied area is 165 μm x 83 μm). Measurement results confirm the expected operating range from the simulations, and therefore, that the oscillator fulfil effectively the goals initially proposed in order to be used as Local Oscillator in RF Modern Receivers.
Resumo:
In cataract surgery, the eye’s natural lens is removed because it has gone opaque and doesn’t allow clear vision any longer. To maintain the eye’s optical power, a new artificial lens must be inserted. Called Intraocular Lens (IOL), it needs to be modelled in order to have the correct refractive power to substitute the natural lens. Calculating the refractive power of this substitution lens requires precise anterior eye chamber measurements. An interferometry equipment, the AC Master from Zeiss Meditec, AG, was in use for half a year to perform these measurements. A Low Coherence Interferometry (LCI) measurement beam is aligned with the eye’s optical axis, for precise measurements of anterior eye chamber distances. The eye follows a fixation target in order to make the visual axis align with the optical axis. Performance problems occurred, however, at this step. Therefore, there was a necessity to develop a new procedure that ensures better alignment between the eye’s visual and optical axes, allowing a more user friendly and versatile procedure, and eventually automatizing the whole process. With this instrument, the alignment between the eye’s optical and visual axes is detected when Purkinje reflections I and III are overlapped, as the eye follows a fixation target. In this project, image analysis is used to detect these Purkinje reflections’ positions, eventually automatically detecting when they overlap. Automatic detection of the third Purkinje reflection of an eye following a fixation target is possible with some restrictions. Each pair of detected third Purkinje reflections is used in automatically calculating an acceptable starting position for the fixation target, required for precise measurements of anterior eye chamber distances.
Resumo:
Introduction Schistosomiasis is a parasitic disease of public health concern in Brazil, and the construction of hydroelectric dams, in addition to increasing permanent human settlement and tourism, has created conditions suitable for the establishment of mollusks that can transmit schistosomiasis. Such areas require a number of actions to prevent the establishment of schistosomiasis. This paper reports on a freshwater malacological survey carried out in the geographical area of the Manso Power Plant. Methods Mollusks were collected in 18 municipalities in the State of Mato Grosso between February 2002 and February 2004 (qualitative study) and from April 2009 to February 2011 (quantitative study). Results Thirty-one species of mollusks were collected, including newly recorded species (Antillorbis nordestensis and Burnupia ingae). In addition, the geographic distributions of known species, including Biomphalaria straminea, a snail vector of Schistosoma mansoni, were expanded. A total of 4,507 specimens were collected in the APM Manso reservoir (Usina Hidrelétrica de Aproveitamento Múltiplo de Manso) during the quantitative study, and Biomphalaria amazonica was found in six of the 10 localities analyzed. The Afroasiatic species Melanoides tuberculata, introduced after February 2009, was the dominant species (relative abundance 94.96%). Conclusions The study area is epidemiologically important due to the occurrence of B. straminea and B. amazonica, which are vectors of schistosomiasis, and M. tuberculata, a snail host of Centrocestus formosanus, which is responsible for centrocestiasis transmission. Observations of M. tuberculata and the exotic freshwater clams Corbicula fluminea and Corbicula largillierti raise concerns about biodiversity.
Resumo:
The spinning rotor gauge (SRG) is one of the most interesting vacuum gauges ever made, covering a pressure range of over seven orders of magnitude, with minimal gas interference (no pumping, ionization or heating of the measured gas), and a great stability of less than 1% drift per year. But despite its remarkable properties, apparently the SRG has not been further developed since the eighties, when it gained commercial interest. In this context, this dissertation aims at providing a starting point for a new line of investigation regarding this instrument, focused on the rotor itself. A brief study of different rotor geometries is provided, including a comparison between a cylindrical rotor and a spherical one. A cylindrical spinning rotor gauge (CSRG) is then proposed, based on the original SRG, but requiring a completely new lateral damping system. A prototype was built and tested against a non calibrated reference gauge.