971 resultados para Pocket gophers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The class I major histocompatibility complex (MHC) glycoprotein HLA-B27 binds short peptides containing arginine at peptide position 2 (P2). The HLA-B27/peptide complex is recognized by T cells both as part of the development of the repertoire of T cells in the cellular immune system and during activation of cytotoxic T cells. Based on the three-dimensional structure of HLA-B27, we have synthesized a ligand with an aziridine-containing side chain designed to mimic arginine and to bind covalently in the arginine-specific P2 pocket of HLA-B27. Using tryptic digestion followed by mass spectrometry and amino acid sequencing, the aziridine-containing ligand is shown to alkylate specifically cysteine 67 of HLA-B27. Neither free cysteine in solution nor an exposed cysteine on a class II MHC molecule can be alkylated, showing that specific recognition between the anchor side-chain pocket of an MHC class I protein and the designed ligand (propinquity) is necessary to induce the selective covalent reaction with the MHC class I molecule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the previously determined structure of mitochondrial F1-ATPase determined with crystals grown in the presence of adenylyl-imidodiphosphate (AMP-PNP) and ADP, the three catalytic beta-subunits have different conformations and nucleotide occupancies. AMP-PNP and ADP are bound to subunits beta TP and beta DP, respectively, and the third beta-subunit (beta E) has no bound nucleotide. The efrapeptins are a closely related family of modified linear peptides containing 15 amino acids that inhibit both ATP synthesis and hydrolysis by binding to the F1 catalytic domain of F1F0-ATP synthase. In crystals of F1-ATPase grown in the presence of both nucleotides and inhibitor, efrapeptin is bound to a unique site in the central cavity of the enzyme. Its binding is associated with small structural changes in side chains of F1-ATPase around the binding pocket. Efrapeptin makes hydrophobic contacts with the alpha-helical structure in the gamma-subunit, which traverses the cavity, and with subunit beta E and the two adjacent alpha-subunits. Two intermolecular hydrogen bonds could also form. Intramolecular hydrogen bonds probably help to stabilize efrapeptin's two domains (residues 1-6 and 9-15, respectively), which are connected by a flexible region (beta Ala-7 and Gly-8). Efrapeptin appears to inhibit F1-ATPase by blocking the conversion of subunit beta E to a nucleotide binding conformation, as would be required by an enzyme mechanism involving cyclic interconversion of catalytic sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retinoblastoma (RB-1) is a tumor suppressor gene that encodes a 105-kDa nuclear phosphoprotein. To date, RB genes have been isolated only from metazoans. We have isolated a cDNA from maize endosperm whose predicted protein product (ZmRb) shows homology to the "pocket" A and B domains of the Rb protein family. We found ZmRb behaves as a pocket protein based on its ability to specifically interact with oncoproteins encoded by DNA tumor viruses (E7, T-Ag, E1A). ZmRb can interact in vitro and in vivo with the replication-associated protein, RepA, encoded by the wheat dwarf virus. The maize Rb-related protein undergoes changes in level and phosphorylation state concomitant with endoreduplication, and it is phosphorylated in vitro by an S-phase kinase from endoreduplicating endosperm cells. Together, our results suggest that ZmRb is a representative of the pocket protein family and may play a role in cell cycle progression. Moreover, certain plant monopartite geminiviruses may operate similarly to mammalian DNA viruses, by targeting and inactivating the retinoblastoma protein, which otherwise induces G1 arrest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structure of the sigma class glutathione transferase from squid digestive gland in complex with S-(3-iodobenzyl)glutathione reveals a third binding site for the glutathione conjugate besides the two in the active sites of the dimer. The additional binding site is near the crystallographic two-fold axis between the two alpha 4-turn-alpha 5 motifs. The principal binding interactions with the conjugate include specific electrostatic interactions between the peptide and the two subunits and a hydrophobic cavity found across the two-fold axis that accommodates the 3-iodobenzyl group. Thus, two identical, symmetry-related but mutually exclusive binding modes for the third conjugate are observed. The hydrophobic pocket is about 14 A from the hydroxyl group of Tyr-7 in the active site. This site is a potential transport binding site for hydrophobic molecules or their glutathione conjugates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the structure of bovine mitochondrial F1-ATPase that was previously determined with crystals grown in the presence of adenylyl-imidodiphosphate (AMP-PNP) and ADP, the three catalytic beta-subunits have different conformations and nucleotide occupancies. Adenylyl-imidodiphosphate is bound to one beta-subunit (betaTP), ADP is bound to the second (betaDP), and no nucleotide is bound to the third (betaE). Here we show that the uncompetitive inhibitor aurovertin B binds to bovine F1 at two equivalent sites in betaTP and betaE, in a cleft between the nucleotide binding and C-terminal domains. In betaDP, the aurovertin B pocket is incomplete and is inaccessible to the inhibitor. The aurovertin B bound to betaTP interacts with alpha-Glu399 in the adjacent alphaTP subunit, whereas the aurovertin B bound to betaE is too distant from alphaE to make an equivalent interaction. Both sites encompass betaArg-412, which was shown by mutational studies to be involved in binding aurovertin. Except for minor changes around the aurovertin pockets, the structure of bovine F1-ATPase is the same as determined previously. Aurovertin B appears to act by preventing closure of the catalytic interfaces, which is essential for a catalytic mechanism involving cyclic interconversion of catalytic sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The x-ray structure of carbon monoxide (CO)-ligated myoglobin illuminated during data collection by a laser diode at the wavelength lambda = 690 nm has been determined to a resolution of 1.7 A at T = 36 K. For comparison, we also measured data sets of deoxymyoglobin and CO-ligated myoglobin. In the photon-induced structure the electron density associated with the CO ligand can be described by a tube extending from the iron into the heme pocket over more than 4 A. This density can be interpreted by two discrete positions of the CO molecule. One is close to the heme iron and can be identified to be bound CO. In the second, the CO is dissociated from the heme iron and lies on top of pyrrole ring C. At our experimental conditions the overall structure of myoglobin in the metastable state is close to the structure of a CO-ligated molecule. However, the iron has essentially relaxed into the position of deoxymyoglobin. We compare our results with those of Schlichting el al. [Schlichting, I., Berendzen, J., Phillips, G. N., Jr., & Sweet, R. M. (1994) Nature 317, 808-812], who worked with the myoglobin mutant (D122N) that crystallizes in the space group P6 and Teng et al. [Teng, T. Y., Srajer, V. & Moffat, K. (1994) Nat. Struct. Biol. 1, 701-705], who used native myoglobin crystals of the space group P2(1). Possible reasons for the structural differences are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A human cDNA sequence homologous to human deoxycytidine kinase (dCK; EC 2.7.1.74) was identified in the GenBank sequence data base. The longest open reading frame encoded a protein that was 48% identical to dCK at the amino acid level. The cDNA was expressed in Escherichia coli and shown to encode a protein with the same substrate specificity as described for the mitochondrial deoxyguanosine kinase (dGK; EC 2.7.1.113). The N terminus of the deduced amino acid sequence had properties characteristic for a mitochondrial translocation signal, and cleavage at a putative mitochondrial peptidase cleavage site would give a mature protein size of 28 kDa. Northern blot analysis determined the length of dGK mRNA to 1.3 kbp with no cross-hybridization to the 2.8-kbp dCK mRNA. dGK mRNA was detected in all tissues investigated with the highest expression levels in muscle, brain, liver, and lymphoid tissues. Alignment of the dGK and herpes simplex virus type 1 thymidine kinase amino acid sequences showed that five regions, including the substrate-binding pocket and the ATP-binding glycine loop, were also conserved in dGK. To our knowledge, this is the first report of a cloned mitochondrial nucleoside kinase and the first demonstration of a general sequence homology between two mammalian deoxyribonucleoside kinases. Our findings suggest that dCK and dGK are evolutionarily related, as well as related to the family of herpes virus thymidine kinases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The variable immunoglobulin (Ig) domains contain hypervariable regions that are involved in the formation of the antigen binding site. Besides the canonical antigen binding site, so-called unconventional sites also reside in the variable region that bind bacterial and viral proteins. Docking to these unconventional sites does not typically interfere with antigen binding, which suggests that these sites may be a part of the biological functions of Igs. Herein, a novel unconventional binding site is described. The site is detected with 8-azidopurine nucleotide photoaffinity probes that label antibodies efficiently and under mild conditions. Tryptic peptides were isolated from photolabeled monoclonal antibodies and aligned with the variable antibody domains of heavy and light chains. The structure of a variable Ig fragment was used to model the binding of the purine nucleotide to invariant residues in a hydrophobic pocket of the Ig molecule at a location distant from the antigen binding site. Monoclonal and polyclonal antibodies were biotinylated with the photoaffinity linker and used in fluorescence-activated cell sorter and ELISA analyses. The data support the utility of this site for tethering diagnostic and therapeutic agents to the variable Ig fragment region without impairing the structural and functional integrity of antibodies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The N-methyl-D-aspartate (NMDA) subtype of ionotropic glutamate receptors is a heterooligomeric membrane protein composed of homologous subunits. Here, the contribution of the M3-M4 loop of the NR1 subunit to the binding of glutamate and the co-agonist glycine was investigated by site-directed mutagenesis. Substitution of the phenylalanine residues at positions 735 or 736 of the M3-M4 loop produced a 15- to 30-fold reduction in apparent glycine affinity without affecting the binding of glutamate and the competitive glycine antagonist 7-chlorokynurenic acid; mutation of both residues caused a >100-fold decrease in glycine affinity. These residues are found in a C-terminal region of the M3-M4 loop that shows significant sequence similarity to bacterial amino acid-binding proteins. Epitope tagging revealed both the N-terminus and the M3-M4 loop to be exposed extracellularly, whereas a C-terminal epitope was localized intracellularly. These results indicate that the M3-M4 loop is part of the ligand-binding pocket of the NR1 subunit and provide the basis for a refined model of the glycine-binding site of the NMDA receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inherited defects in the gene for methylmalonyl-CoA mutase (EC 5.4.99.2) result in the mut forms of methylmalonic aciduria. mut- mutations lead to the absence of detectable mutase activity and are not corrected by excess cobalamin, whereas mut- mutations exhibit residual activity when exposed to excess cobalamin. Many of the mutations that cause methylmalonic aciduria in humans affect residues in the C-terminal region of the methylmalonyl-CoA mutase. This portion of the methylmalonyl-CoA mutase sequence can be aligned with regions in other B12 (cobalamin)-dependent enzymes, including the C-terminal portion of the cobalamin-binding region of methionine synthase. The alignments allow the mutations of human methylmalonyl-CoA mutase to be mapped onto the structure of the cobalamin-binding fragment of methionine synthase from Escherichia coli (EC 2.1.1.13), which has recently been determined by x-ray crystallography. In this structure, the dimethylbenzimidazole ligand to the cobalt in free cobalamin has been displaced by a histidine ligand, and the dimethylbenzimidazole nucleotide "tail" is thrust into a deep hydrophobic pocket in the protein. Previously identified mut0 and mut- mutations (Gly-623 --> Arg, Gly-626 --> Cys, and Gly-648 --> Asp) of the mutase are predicted to interfere with the structure and/or stability of the loop that carries His-627, the presumed lower axial ligand to the cobalt of adenosylcobalamin. Two mutants that lead to severe impairment (mut0) are Gly-630 --> Glu and Gly-703 --> Arg, which map to the binding site for the dimethylbenzimidazole nucleotide substituent of adenosylcobalamin. The substitution of larger residues for glycine is predicted to block the binding of adenosylcobalamin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A powerful and potentially general approach to the targeting and crystallization of proteins on lipid interfaces through coordination of surface histidine residues to lipid-chelated divalent metal ions is presented. This approach, which should be applicable to the crystallization of a wide range of naturally occurring or engineered proteins, is illustrated here by the crystallization of streptavidin on a monolayer of an iminodiacetate-Cu(II) lipid spread at the air-water interface. This method allows control of the protein orientation at interfaces, which is significant for the facile production of highly ordered protein arrays and for electron density mapping in structural analysis of two-dimensional crystals. Binding of native streptavidin to the iminodiacetate-Cu lipids occurs via His-87, located on the protein surface near the biotin binding pocket. The two-dimensional streptavidin crystals show a previously undescribed microscopic shape that differs from that of crystals formed beneath biotinylated lipids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Correct folding of newly synthesized proteins is proposed to be assisted by molecular chaperones and folding catalysts. To identify cellular factors involved in the initial stages of this process we searched for proteins associated with nascent polypeptide chains. In an Escherichia coli transcription/translation system synthesizing beta-galactosidase we identified a 58-kDa protein which associated with translating ribosomes but dissociated from these ribosomes upon release of nascent beta-galactosidase. N-terminal sequencing identified it as trigger factor, previously implicated in protein secretion. Direct evidence for association of trigger factor with nascent polypeptide chains was obtained by crosslinking. In a wheat germ translation system complemented with E. coli lysates, epsilon-4-(3-trifluoromethyldiazirino)benzoic acid-lysine residues were incorporated into nascent secretory preprolactin and a nonsecretory preprolactin mutant. Trigger factor crosslinked to both types of nascent chains, provided they were ribosome bound. Trigger factor contains key residues of the substrate-binding pocket of FK506-binding protein-type peptidyl-prolyl-cis/trans-isomerases and has prolyl isomerase activity in vitro. We propose that trigger factor is a folding catalyst acting cotranslationally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central role of cyclin-dependent kinases (CDKs) in cell cycle regulation makes them a promising target for studying inhibitory molecules that can modify the degree of cell proliferation. The discovery of specific inhibitors of CDKs such as polyhydroxylated flavones has opened the way to investigation and design of antimitotic compounds. A novel flavone, (-)-cis-5,7-dihydroxyphenyl-8-[4-(3-hydroxy-1-methyl)piperidinyl] -4H-1-benzopyran-4-one hydrochloride hemihydrate (L868276), is a potent inhibitor of CDKs. A chlorinated form, flavopiridol, is currently in phase I clinical trials as a drug against breast tumors. We determined the crystal structure of a complex between CDK2 and L868276 at 2.33 angstroms resolution and refined to an Rfactor 20.3%. The aromatic portion of the inhibitor binds to the adenine-binding pocket of CDK2, and the position of the phenyl group of the inhibitor enables the inhibitor to make contacts with the enzyme not observed in the ATP complex structure. The analysis of the position of this phenyl ring not only explains the great differences of kinase inhibition among the flavonoid inhibitors but also explains the specificity of L868276 to inhibit CDK2 and CDC2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quinoxaline nonnucleoside RT inhibitor (NNRTI) (S)-4-isopropoxycarbonyl-6-methoxy-3-(methylthiomethyl)-3,4- dihydroquinoxaline-2(1H)-thione (HBY 097) was used to select for drug-resistant HIV-1 variants in vitro. The viruses first developed mutations affecting the NNRTI-binding pocket, and five of six strains displayed the RT G190-->E substitution, which is characteristic for HIV-1 resistance against quinoxalines. In one variant, a new mutant (G190-->Q) most likely evolved from preexisting G190-->E mutants. The negative charge introduced by the G190-->E substitution was maintained at that site of the pocket by simultaneous selection for V179-->D together with G190-->Q. After continued exposure to the drug, mutations at positions so far known to be specific for resistance against nucleoside RT inhibitors (NRTIs) (L74-->V/I and V75-->L/I) were consistently detected in all cultures. The inhibitory activities of the cellular conversion product of 2',3'-dideoxyinosine (ddI, didanosine), 2',3'-dideoxyadenosine (ddA) and of 2',3'-didehydro-3'-deoxythymidine (d4T, stavudine) against these late-passage viruses were shown to be enhanced with the L74-->V/I RT mutant virus as compared with the wild-type (wt) HIV-1MN isolate. Clonal analysis proved linkage of the codon 74 and codon 75 mutations to the NNRTI-specific mutations in all RT gene fragments. The nonnucleoside- and nucleoside-resistance mutation sites are separated by approximately 35 A. We propose that the two sites "communicate" through the template-primer which is situated in the DNA-binding cleft between these two sites. Quinoxalines cause high selective pressure on HIV-1 replication in vitro; however, the implication of these findings for the treatment of HIV-1 infection has yet to be determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GTP cyclohydrolase I of Escherichia coli is a torus-shaped homodecamer with D5 symmetry and catalyzes a complex ring expansion reaction conducive to the formation of dihydroneopterin triphosphate from GTP. The x-ray structure of a complex of the enzyme with the substrate analog, dGTP, bound at the active site was determined at a resolution of 3 A. In the decamer, 10 equivalent active sites are present, each of which contains a 10-A deep pocket formed by surface areas of 3 adjacent subunits. The substrate forms a complex hydrogen bond network with the protein. Active site residues were modified by site-directed mutagenesis, and enzyme activities of the mutant proteins were measured. On this basis, a mechanism of the enzyme-catalyzed reaction is proposed. Cleavage of the imidazole ring is initiated by protonation of N7 by His-179 followed by the attack of water at C8 of the purine system. Cystine Cys-110 Cys-181 may be involved in this reaction step. Opening of the imidazole ring may be in concert with cleavage of the furanose ring to generate a Schiff's base from the glycoside. The gamma-phosphate of GTP may be involved in the subsequent Amadori rearrangement of the carbohydrate side chain by activating the hydroxyl group of Ser-135.