853 resultados para Plastic deformation.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation of alkali metals K, Rb, and Cs under epitaxial deformation is studied via the ab initio pseudopotential plane wave method using the local-density approximation. Under loading from the stable fee phase, metastable stares along directions [001], [111], and [201] are identified. One metastable state, presented at direction [201], has a very low symmetry in contrast to the planes [001] and [201]. Our results show that the softening direction and sequences of growth is significantly affected by the existence of the metastable states and magnitude of the energy barrier. The resulting softening sequences from soft to hard are [201], [110], [001], and [111] under biaxial compression and [001], [111], [201], and [110] under biaxial tension. An orthorhombic deformation path is used to investigate the fact, that the structure of the alkali films K and Cs evolve from the quasihexagonal structure into the (110)-oriented bcc structure, observed by experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spherical nanoindentation tests were performed on Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass and pile-ups were observed around the indenter. A new modified expanding cavity model was developed to characterize the indentation deformation behavior of strain-hardening and pressure-dependent materials. By using this model, the representative stress-strain response of this bulk metallic glass to hardness and indentation in the elastic-plastic regime were obtained taking into consideration the effect of pile-up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free surface deformation is one of the most important physical phenomena in fluids with free surface. In the present paper, convection and surface deformation caused by thermocapillary effect in a rectangular cavity were investigated. In ground experiments, the convection was also affected by gravity. The cavity has a horizontal cross section of 52mm×42mm and the thikkness of the liquid layer is 4mm. Temperature difference between two sides of the liquid layer was increased gradually, and the flow in liquid layer will develop from steady to unstable convection. An optical diagnostic system consisting of a revised Michelson interferometer with image processor was developed to study fluid surface deformation in convection, and the displacements of free surface oscillation were determined. PIV technique was adopted to observe the evolution of flow pattern, and the velocity fields were obtained quantitatively. The present experiments demonstrate that surface deformation is quite distinct in buoyant-thermocapillary convection. in order to understand the mechanism of buoyant-thermocapillary convection, not only the hydrothermal wave instability but also the surface wave instability should be discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new phenomenological deformation theory with strain gradient effects is proposed. This theory, which belongs to nonlinear elasticity, fits within the framework of general couple stress theory and involves a single material length scale l. In the present theory three rotational degrees of freedom omega(i) are introduced in addition to the conventional three translational degrees of freedom u(i). omega(i) has no direct dependence upon ui and is called the micro-rotation, i.e. the material rotation theta(i) plus the particle relative rotation. The strain energy density is assumed to only be a function of the strain tensor and the overall curvature tensor, which results in symmetric Cauchy stresses. Minimum potential principle is developed for the strain gradient deformation theory version. In the limit of vanishing 1, it reduces to the conventional counterparts: J(2) deformation theory. Equilibrium equations, constitutive relations and boundary conditions are given in details. Comparisons between the present theory and the theory proposed by Shizawa and Zbib (Shizawa, K., Zbib, H.M., 1999. A thermodynamical theory gradient elastoplasticity with dislocation density Censor: fundamentals. Int. J. Plast. 15, 899) are given. With the same hardening law as Fleck et al. (Fleck, N.A., Muller, G.H., Ashby, M.F., Hutchinson, JW., 1994 Strain gradient plasticity: theory and experiment. Acta Metall. Mater 42, 475), the new strain gradient deformation theory is used to investigate two typical examples, i.e. thin metallic wire torsion and ultra-thin metallic beam bend. The results are compared with those given by Fleck et al, 1994 and Stolken and Evans (Stolken, J.S., Evans, A.G., 1998. A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109). In addition, it is explained for a unit cell that the overall curvature tensor produced by the overall rotation vector is the work conjugate of the overall couple stress tensor. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cambridge University's Gordon Laboratory, in collaboration with Fibertech and the Defence Science and Technology Laboratory in the UK, has developed a novel melt spun fiber bore called 'Fibrecore', fabricated entirely from stainless steel with thin faceplates. Fibrecore is typically manufactured by 5mm-long and 70μm thick stainless steel fibers, produced by a melt overflow process. Its entirely metallic construction allows spot welding and tungsten inert gas welding without difficulty. Fibrecore exhibits different energy absorption mechanisms such as core cushioning, core-faceplate delamination, and plastic faceplate deformation, often in a concertina-like fashion. Its low-cost, high structural efficiency and good energy absorption characteristics make it attractive for a range of commercial and military applications. Such applications being evaluated include vehicle body panels, exhaust system noise reduction, low cost filters, and lightweight physical protection. In addition to these characteristics, Fibrecore exhibits properties such as corrosion protection, vibrational damping, and thermal insulation, which also extend its applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is proved that Johnson's damage number is the sole similarity parameter for dynamic plastic shear failure of structures loaded impulsively, therefore, dynamic plastic shear failure can be understood when damage number reaches a critical value. It is suggested that the damage number be generally used to predict the dynamic plastic shear failure of structures under various kinds of dynamic loads (impulsive loading, rectangular pressure pulse, exponential pressure pulse, etc.,). One of the advantages for using the damage number to predict such kind of failure is that it is conveniently used for dissimilar material modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A preliminary study is presented of the relationship between the microstructural aspects of failure and the fracture energy G//1//C for cracking parallel to the fibres in long-fibre/thermoplastic matrix composites. Fracture energies are measured by a new technique, and fracture surfaces generated by the test are examined by scanning electron microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A preliminary study is presented of the relationship between the microstructural aspects of failure and the fracture energy G//l//C for cracking parallel to the fibres in long-fibre/thermoplastic matrix composites. Fracture energies are measured by a new technique, and fracture surfaces generated by the test are examined by scanning electron microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tensile deformation and failure of polymer bonded explosives (PBXs), a particulate composite, is studied in this paper. Two HMX-based PBXs with different binder were selected for study. A diametric compression test, in which a disc-shaped specimen is loaded diametrically, was chosen to generate tensile failure in the materials. The quasi-static tensile properties and the tensile creep properties were studied by using conventional displacement transducers to measure the lateral strain along the horizontal diameter. The whole-field in-plane creep deformation was measured by using the technique of high resolution moire´ interferometry. Real time microscopic examination was conducted to monitor the process of deformation and failure of PBXs by using a scanning electron microscope equipped with a loading stage. A manifold method (MM) was used to simulate the deformation and failure of PBX samples under the diametric compression test, including the crack initiation, crack propagation and final cleavage fracture. The mechanisms of deformation and failure of PBXs under diametric compression were analyzed. The diametric compression test and the techniques developed in this research have proven to be applicable to the study of tensile properties of PBXs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A kind of novel Ti-based composites was developed by introducing different amounts of carbon element to the Ti-50 Cu-23 Ni-20 Sn-7 bulk metallic glass forming alloys. The thermal stability and microstructural evolution of the composites were investigated. Room temperature compression tests reveal that the composite samples with 1% and 3% (mass fraction) carbon additions have higher fracture strength and obvious plastic strain of 2 195 MPa, 3.1% and 1 913 MPa, 1.3% respectively, compared with those of the corresponding carbon-free Ti-50 Ni-20 Cu-23 Sn-7 alloys. The deformation mechanisms of the composites with improved mechanical properties were also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present research, the discrete dislocation theory is used to analyze the size effect phenomena for the MEMS devices undergoing micro-bending load. A consistent result with the experimental one in literature is obtained. In order to check the effectiveness to use the discrete dislocation theory in predicting the size effect, both the basic version theory and the updated one are adopted simultaneously. The normalized stress-strain relations of the material are obtained for different plate thickness or for different obstacle density. The prediction results are compared with experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new kind of failure mode is observed in circular brass foils in which their peripheries are fixed and their surfaces are subjected to a long pulsed laser over a central region. The failure is classified into three stages; they are referred to as thermal bulging, localized shear deformation and perforation by plugging. A distinct feature of the failure mode is that bulging and plugging occurred in the direction opposite to the incident laser beam. To study the failure mode, we investigate the non-linear response of heated, non-homogeneous circular plates. Based on the large deflection equations of Berger [J. Appl. Mech. 22 (3), 465-472 (1965)], Ohnabe and Mizuguchi [Int. J. Non-Linear Mech. 28 (4), 365-372 (1993)] and the parabolic shear deformation theory of Bhimaraddi and Stevens [J. Appl. Mech. 51 (1), 195-198 (1984)], we have derived new coupled governing equations of shear deformation and deflection. The new equations are solved, for the plate with a clamped edge, by the Galerkin and iterative methods. The numerical results for the shear deformation distribution are in good agreement with the experimental observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assumption of constant rock properties in pressure-transient analysis of stress-sensitive reservoirs can cause significant errors in the estimation of temporal and spatial variation of pressure. In this article, the pressure transient response of the fractal medium in stress-sensitive reservoirs was studied by using the self-similarity solution method and the regular perturbation method. The dependence of permeability on pore pressure makes the flow equation strongly nonlinear. The nonlinearities associated with the governing equation become weaker by using the logarithm transformation. The perturbation solutions for a constant pressure production and a constant rate production of a linear-source well were obtained by using the self-similarity solution method and the regular perturbation method in an infinitely large system, and inquire into the changing rule of pressure when the fractal and deformation parameters change. The plots of typical pressure curves were given in a few cases, and the results can be applied to well test analysis.