997 resultados para Plasmid stability
Resumo:
This thesis presents a new class of solvers for the subsonic compressible Navier-Stokes equations in general two- and three-dimensional spatial domains. The proposed methodology incorporates: 1) A novel linear-cost implicit solver based on use of higher-order backward differentiation formulae (BDF) and the alternating direction implicit approach (ADI); 2) A fast explicit solver; 3) Dispersionless spectral spatial discretizations; and 4) A domain decomposition strategy that negotiates the interactions between the implicit and explicit domains. In particular, the implicit methodology is quasi-unconditionally stable (it does not suffer from CFL constraints for adequately resolved flows), and it can deliver orders of time accuracy between two and six in the presence of general boundary conditions. In fact this thesis presents, for the first time in the literature, high-order time-convergence curves for Navier-Stokes solvers based on the ADI strategy---previous ADI solvers for the Navier-Stokes equations have not demonstrated orders of temporal accuracy higher than one. An extended discussion is presented in this thesis which places on a solid theoretical basis the observed quasi-unconditional stability of the methods of orders two through six. The performance of the proposed solvers is favorable. For example, a two-dimensional rough-surface configuration including boundary layer effects at Reynolds number equal to one million and Mach number 0.85 (with a well-resolved boundary layer, run up to a sufficiently long time that single vortices travel the entire spatial extent of the domain, and with spatial mesh sizes near the wall of the order of one hundred-thousandth the length of the domain) was successfully tackled in a relatively short (approximately thirty-hour) single-core run; for such discretizations an explicit solver would require truly prohibitive computing times. As demonstrated via a variety of numerical experiments in two- and three-dimensions, further, the proposed multi-domain parallel implicit-explicit implementations exhibit high-order convergence in space and time, useful stability properties, limited dispersion, and high parallel efficiency.
Resumo:
The early stage of laminar-turbulent transition in a hypervelocity boundary layer is studied using a combination of modal linear stability analysis, transient growth analysis, and direct numerical simulation. Modal stability analysis is used to clarify the behavior of first and second mode instabilities on flat plates and sharp cones for a wide range of high enthalpy flow conditions relevant to experiments in impulse facilities. Vibrational nonequilibrium is included in this analysis, its influence on the stability properties is investigated, and simple models for predicting when it is important are described.
Transient growth analysis is used to determine the optimal initial conditions that lead to the largest possible energy amplification within the flow. Such analysis is performed for both spatially and temporally evolving disturbances. The analysis again targets flows that have large stagnation enthalpy, such as those found in shock tunnels, expansion tubes, and atmospheric flight at high Mach numbers, and clarifies the effects of Mach number and wall temperature on the amplification achieved. Direct comparisons between modal and non-modal growth are made to determine the relative importance of these mechanisms under different flow regimes.
Conventional stability analysis employs the assumption that disturbances evolve with either a fixed frequency (spatial analysis) or a fixed wavenumber (temporal analysis). Direct numerical simulations are employed to relax these assumptions and investigate the downstream propagation of wave packets that are localized in space and time, and hence contain a distribution of frequencies and wavenumbers. Such wave packets are commonly observed in experiments and hence their amplification is highly relevant to boundary layer transition prediction. It is demonstrated that such localized wave packets experience much less growth than is predicted by spatial stability analysis, and therefore it is essential that the bandwidth of localized noise sources that excite the instability be taken into account in making transition estimates. A simple model based on linear stability theory is also developed which yields comparable results with an enormous reduction in computational expense. This enables the amplification of finite-width wave packets to be taken into account in transition prediction.
Resumo:
When flow returns to a temporary stream a certain number of plant and animal species establish themselves more or less rapidly on the stream-bed constituting the initial phase of evolution of the re-population. This phase is essentially characterised by the ”awakening” of animal species that passed the dry season in a dormant state and by the development of the first unicellular algae that constitute the periphyton. Then they are succeeded by more or less stable animal groups and the structural complexity increases. The authors of the present study aim to analyse the dynamics of community succession from the return of water to the biotope until its drying up. It is attempted to determine the influence of the duration of flow on this evolution. This work is based on the analysis of population diversity with reference to its two complementary aspects, species richness and equitability. The River Destel which was studied for this project is situated in the Gorge of Ollioules near the town of Toulon.
Resumo:
In this thesis we study the growth of a Li electrode-electrolyte interface in the presence of an elastic prestress. In particular, we focus our interest on Li-air batteries with a solid electrolyte, LIPON, which is a new type of secondary or rechargeable battery. Theoretical studies and experimental evidence show that during the process of charging the battery the replated lithium adds unevenly to the electrode surface. This phenomenon eventually leads to dendrite formation as the battery is charged and discharged numerous times. In order to suppress or alleviate this deleterious effect of dendrite growth, we put forth a study based on a linear stability analysis. Taking into account all the mechanisms of mass transport and interfacial kinetics, we model the evolution of the interface. We find that, in the absence of stress, the stability of a planar interface depends on interfacial diffusion properties and interfacial energy. Specifically, if Herring-Mullins capillarity-driven interfacial diffusion is accounted for, interfaces are unstable against all perturbations of wavenumber larger than a critical value. We find that the effect of an elastic prestress is always to stabilize planar interfacial growth by increasing the critical wavenumber for instability. A parametric study results in quantifying the extent of the prestress stabilization in a manner that can potentially be used in the design of Li-air batteries. Moreover, employing the theory of finite differences we numerically solve the equation that describes the evolution of the surface profile and present visualization results of the surface evolution by time. Lastly, numerical simulations performed in a commercial finite element software validate the theoretical formulation of the interfacial elastic energy change with respect to the planar interface.
Resumo:
Sufficient stability criteria for classes of parametrically excited differential equations are developed and applied to example problems of a dynamical nature.
Stability requirements are presented in terms of 1) the modulus of the amplitude of the parametric terms, 2) the modulus of the integral of the parametric terms and 3) the modulus of the derivative of the parametric terms.
The methods employed to show stability are Liapunov’s Direct Method and the Gronwall Lemma. The type of stability is generally referred to as asymptotic stability in the sense of Liapunov.
The results indicate that if the equation of the system with the parametric terms set equal to zero exhibits stability and possesses bounded operators, then the system will be stable under sufficiently small modulus of the parametric terms or sufficiently small modulus of the integral of the parametric terms (high frequency). On the other hand, if the equation of the system exhibits individual stability for all values that the parameter assumes in the time interval, then the actual system will be stable under sufficiently small modulus of the derivative of the parametric terms (slowly varying).
Resumo:
Aspartic acid, threonine, serine and other thermally unstable amino acids have been found in fine-grained elastic sediments of advanced geologic age. The presence of these compounds in ancient sediments conflicts with experimental data determined for their simple thermal decomposition.
Recent and Late Miocene sediments and their humic acid extracts, known to contain essentially complete suites of amino acids, were heated with H2O in a bomb at temperatures up to 500°C in order to compare the thermal decomposition characteristics of the sedimentary amino compounds.
Most of the amino acids found in protein hydrolyzates are obtained from the Miocene rock in amounts 10 to 100 times less than from the Recent sediment. The two unheated humic acids are rather similar despite their great age difference. The Miocene rock appears uncontaminated by Recent carbon.
Yields of amino acids generally decline in the heated Recent sediment. Some amino compounds apparently increase with heating time in the Miocene rock.
Relative thermal stabilities of the amino acids in sediments are generally similar to those determined using pure aqueous solutions. The relative thermal stabilities of glutamic acid, glycine, and phenylalanine vary in the Recent sediment but are uniform in the Miocene rock.
Amino acids may occur in both proteins and humic complexes in the Recent sediment, while they are probably only present in stabilized organic substances in the Miocene rock. Thermal decomposition of protein amino acids may be affected by surface catalysis in the Recent sediment. The apparent activation energy for the decomposition of alanine in this sediment is 8400 calories per mole. Yields of amino compounds from the heated sediments are not affected by thermal decomposition only.
Amino acids in sediments may only be useful for geothermometry in a very general way.
A better picture of the amino acid content of older sedimentary rocks may be obtained if these sediments are heated in a bomb with H2O at temperatures around 150°C prior to HCl hydrolysis.
Leucine-isoleucine ratios may prove to be useful as indicators of amino acid sources or for evaluating the fractionation of these substances during diagenesis. Leucine-isoleucine ratios of the Recent and Miocene sediments and humic acids are identical. The humic acids may have a continental source.
The carbon-nitrogen and carbon-hydrogen ratios of sediments and humic acids increase with heating time and temperature. Ratios comparable to those in some kerogens are found in the severely heated Miocene sediment and humic acid.
Resumo:
I. CONFIGURATIONAL STABILITY AND REDISTRIBUTION EQUILIBRIA IN ORGANOMAGNESIUM COMPOUNDS
The dependence of the rate of inversion of a dialkylmagnesium compound on the solvent has been studied.
Examination of the temperature dependence of the nuclear magnetic resonance spectrum of 1-phenyl-2-propylmagnesium bromide in diethyl ether solution indicates that inversion of configuration at the methylene group of this Grignard reagent occurs with an approximate rate of 2 sec-1 at room temperature. This is the first example of a rapid inversion rate in a secondary Grignard reagent.
The rates of exchange of alkyl groups between dineopentylmagnesium and di-s-butylmagnesium, bis-(2-methylbutyl)-magnesium and bis-(4, 4-dimethyl-2-pentyl)-magnesium respectively in diethyl ether solution were found to be fast on the nmr time scale. However, the alkyl group exchange rate was found to be slow in a diethyl ether solution of dineopentylmagnesium and bis-(2-methylbutyl)-magnesium containing N, N, N', N'-tetramethylethylenediamine. The unsymmetrical species neopentyl-2-methylbutyl-magnesium was observed at room temperature in the nmr spectrum of the solution containing the diamine.
II. REDISTRIBUTION EQUILIBRIA IN ORGANOCADMIUM COMPOUNDS
The exchange of methyl groups in dimethylcadmium has been studied by nuclear magnetic resonance spectroscopy. Activation parameters for the methyl group exchange have been measured for a neat sample and for a solution in tetrahydrofuran. The exchange is faster in the basic solvent tetrahydrofuran relative to the neat sample and in tetrahydrofuran solution is retarded by the solvating agent N, N, N’, N’-tetramethylethylenediamine and greatly increased by cadmium bromide. The addition of methanol to a solution of dimethylcadmium in tetrahydrofuran appears to have very little effect on the rate of exchange. The exchange was found to proceed with retention of configuration. The rate-limiting step for the exchange of methyl groups in a basic solvent appears to be the dissociation of coordinating solvent from dimethylcadmium.
The equilibrium between methylcadmium bromide, dimethylcadmium and cadmium bromide in tetrahydrofuran solution has also been studied. At room temperature the interconversion of the species is very fast on the nmr time scale but at -100° distinct absorptions for methylcadmium bromide and imethylcadmium are observed.
The species ethylmethylcadmium has been observed in the nmr spectrum.
The rate of exchange of vinyl groups in a solution of divinylcadmium in tetrahydrofuran has been found to be fast on the nmr time scale.
Resumo:
Documentos de Trabajo
Resumo:
The equations of relativistic, perfect-fluid hydrodynamics are cast in Eulerian form using six scalar "velocity-potential" fields, each of which has an equation of evolution. These equations determine the motion of the fluid through the equation
Uʋ=µ-1 (ø,ʋ + αβ,ʋ + ƟS,ʋ).
Einstein's equations and the velocity-potential hydrodynamical equations follow from a variational principle whose action is
I = (R + 16π p) (-g)1/2 d4x,
where R is the scalar curvature of spacetime and p is the pressure of the fluid. These equations are also cast into Hamiltonian form, with Hamiltonian density –T00 (-goo)-1/2.
The second variation of the action is used as the Lagrangian governing the evolution of small perturbations of differentially rotating stellar models. In Newtonian gravity this leads to linear dynamical stability criteria already known. In general relativity it leads to a new sufficient condition for the stability of such models against arbitrary perturbations.
By introducing three scalar fields defined by
ρ ᵴ = ∇λ + ∇x(xi + ∇xɣi)
(where ᵴ is the vector displacement of the perturbed fluid element, ρ is the mass-density, and i, is an arbitrary vector), the Newtonian stability criteria are greatly simplified for the purpose of practical applications. The relativistic stability criterion is not yet in a form that permits practical calculations, but ways to place it in such a form are discussed.
Resumo:
Spurious oscillations are one of the principal issues faced by microwave and RF circuit designers. The rigorous detection of instabilities or the characterization of measured spurious oscillations is still an ongoing challenge. This project aims to create a new stability analysis CAD program that tackles this chal- lenge. Multiple Input Multiple Output (MIMO) pole-zero identification analysis is introduced on the program as a way to create new methods to automate the stability analysis process and to help designers comprehend the obtained results and prevent incorrect interpretations. The MIMO nature of the analysis contributes to eliminate possible controllability and observability losses and helps differentiate mathematical and physical quasi-cancellations, products of overmodeling. The created program reads Single Input Single Output (SISO) or MIMO frequency response data, and determines the corresponding continuous transfer functions with Vector Fitting. Once the transfer function is calculated, the corresponding pole/zero diagram is mapped enabling the designers to analyze the stability of an amplifier. Three data processing methods are introduced, two of which consist of pole/zero elimina- tions and the latter one on determining the critical nodes of an amplifier. The first pole/zero elimination method is based on eliminating non resonant poles, whilst the second method eliminates the poles with small residue by assuming that their effect on the dynamics of a system is small or non-existent. The critical node detection is also based on the residues; the node at which the effect of a pole on the dynamics is highest is defined as the critical node. In order to evaluate and check the efficiency of the created program, it is compared via examples with another existing commercial stability analysis tool (STAN tool). In this report, the newly created tool is proved to be as rigorous as STAN for detecting instabilities. Additionally, it is determined that the MIMO analysis is a very profitable addition to stability analysis, since it helps to eliminate possible problems of loss of controllability, observability and overmodeling.