987 resultados para Plant conservation
Resumo:
BACKGROUND Phytopharmacological studies of different Calendula extracts have shown anti-inflammatory, anti-viral and anti-genotoxic properties of therapeutic interest. In this study, we evaluated the in vitro cytotoxic anti-tumor and immunomodulatory activities and in vivo anti-tumor effect of Laser Activated Calendula Extract (LACE), a novel extract of the plant Calendula Officinalis (Asteraceae). METHODS An aqueous extract of Calendula Officinalis was obtained by a novel extraction method in order to measure its anti-tumor and immunomodulatory activities in vitro. Tumor cell lines derived from leukemias, melanomas, fibrosarcomas and cancers of breast, prostate, cervix, lung, pancreas and colorectal were used and tumor cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of LACE on human peripheral blood lymphocyte (PBL) proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in LACE-treated cells. In vivo anti-tumor activity was evaluated in nude mice bearing subcutaneously human Ando-2 melanoma cells. RESULTS The LACE extract showed a potent in vitro inhibition of tumor cell proliferation when tested on a wide variety of human and murine tumor cell lines. The inhibition ranged from 70 to 100%. Mechanisms of inhibition were identified as cell cycle arrest in G0/G1 phase and Caspase-3-induced apoptosis. Interestingly, the same extract showed an opposite effect when tested on PBLs and NKL cell line, in which in vitro induction of proliferation and activation of these cells was observed. The intraperitoneal injection or oral administration of LACE extract in nude mice inhibits in vivo tumor growth of Ando-2 melanoma cells and prolongs the survival day of the mice. CONCLUSION These results indicate that LACE aqueous extract has two complementary activities in vitro with potential anti-tumor therapeutic effect: cytotoxic tumor cell activity and lymphocyte activation. The LACE extract presented in vivo anti-tumoral activity in nude mice against tumor growth of Ando-2 melanoma cells.
Resumo:
CONTENTS: Summary 28 I. Historic background and introduction 29 II. Diversity of cardenolide forms 29 III. Biosynthesis 30 IV. Cardenolide variation among plant parts 31 V. Phylogenetic distribution of cardenolides 32 VI. Geographic distribution of cardenolides 34 VII. Ecological genetics of cardenolide production 34 VIII. Environmental regulation of cardenolide production 34 IX. Biotic induction of cardenolides 36 X. Mode of action and toxicity of cardenolides 38 XI. Direct and indirect effects of cardenolides on specialist and generalist insect herbivores 39 XII. Cardenolides and insect oviposition 39 XIII. Target site insensitivity 40 XIV. Alternative mechanisms of cardenolide resistance 40 XV. Cardenolide sequestration 41 Acknowledgements 42 References 42 SUMMARY: Cardenolides are remarkable steroidal toxins that have become model systems, critical in the development of theories for chemical ecology and coevolution. Because cardenolides inhibit the ubiquitous and essential animal enzyme Na(+) /K(+) -ATPase, most insects that feed on cardenolide-containing plants are highly specialized. With a huge diversity of chemical forms, these secondary metabolites are sporadically distributed across 12 botanical families, but dominate the Apocynaceae where they are found in > 30 genera. Studies over the past decade have demonstrated patterns in the distribution of cardenolides among plant organs, including all tissue types, and across broad geographic gradients within and across species. Cardenolide production has a genetic basis and is subject to natural selection by herbivores. In addition, there is strong evidence for phenotypic plasticity, with the biotic and abiotic environment predictably impacting cardenolide production. Mounting evidence indicates a high degree of specificity in herbivore-induced cardenolides in Asclepias. While herbivores of cardenolide-containing plants often sequester the toxins, are aposematic, and possess several physiological adaptations (including target site insensitivity), there is strong evidence that these specialists are nonetheless negatively impacted by cardenolides. While reviewing both the mechanisms and evolutionary ecology of cardenolide-mediated interactions, we advance novel hypotheses and suggest directions for future work.
Resumo:
The Energy Center at the Ecole Polytechnique Fédérale de Lausanne (Swiss federal institute of technology) is coordinating a multi-stakeholder effort, the Roundtable on Sustainable Biofuels (http://energycenter.epfl.ch/biofuels), to develop global standards for sustainable biofuels production and processing. Given that many of the aspects related to biofuel production request a high scientific level of understanding, it is crucial that scientists take part in the discussion.
Resumo:
BACKGROUND: Euphorbia plants grow in many gardens. Their milky latex is, however, a strong irritant which may induce various ocular lesions from keratoconjunctivitis to severe uveitis. HISTORY AND SIGNS: A 86-year-old woman developed a unilateral severe anterior chamber inflammation associated with descemtic folds after direct contact with sap of Euphorbia. Visual acuity was limited to counting fingers. Her eye was operated from filtering surgery ten years previously. The patient was closely followed to rule out the diagnosis of bacterial endophthalmitis. THERAPY AND OUTCOME: Symptoms progressively resolved after topical administration of 3 mg/mL ofloxacine and 1 % prednisolone acetate. CONCLUSIONS: Euphorbia sap toxicity may take different forms from keratoconjunctivitis to severe uveitis. Euphorbia sap-induced uveitis should be kept in mind when the patient has seen in contact with freshly cut plants.
Resumo:
The antifungal compound 2,4-diacetylphloroglucinol (Phl) contributes to biocontrol in pseudomonads, but whether or not Phl(+) biocontrol pseudomonads display higher plant-protecting activity than Phl(-) biocontrol pseudomonads remains to be demonstrated. This issue was addressed by assessing 230 biocontrol fluorescent pseudomonads selected from a collection of 3132 bacterial isolates obtained from 63 soils worldwide. One-third of the biocontrol pseudomonads were Phl(+) and almost all Phl(+) isolates also produced hydrogen cyanide (HCN). The only Phl(+) HCN(-) strain did harbor hcn genes, but with the deletion of a 134 bp hcnC fragment corresponding to an ADP-binding motif. Statistical analysis of biocontrol isolate distributions indicated that Phl production ability was associated with superior disease suppression activity in the Pythium-cucumber and Fusarium-tomato pathosystems, but this was also the case with HCN production ability. However, HCN significance was not as strong, as indicated both by the comparison of Phl(-) HCN(+) and Phl(-) HCN(-) strains and by correlation analyses. This is the first population-level demonstration of the higher plant-protecting activity of Phl(+) biocontrol pseudomonads in comparison with Phl(-) biocontrol pseudomonads.
Resumo:
Aim This study compares the direct, macroecological approach (MEM) for modelling species richness (SR) with the more recent approach of stacking predictions from individual species distributions (S-SDM). We implemented both approaches on the same dataset and discuss their respective theoretical assumptions, strengths and drawbacks. We also tested how both approaches performed in reproducing observed patterns of SR along an elevational gradient.Location Two study areas in the Alps of Switzerland.Methods We implemented MEM by relating the species counts to environmental predictors with statistical models, assuming a Poisson distribution. S-SDM was implemented by modelling each species distribution individually and then stacking the obtained prediction maps in three different ways - summing binary predictions, summing random draws of binomial trials and summing predicted probabilities - to obtain a final species count.Results The direct MEM approach yields nearly unbiased predictions centred around the observed mean values, but with a lower correlation between predictions and observations, than that achieved by the S-SDM approaches. This method also cannot provide any information on species identity and, thus, community composition. It does, however, accurately reproduce the hump-shaped pattern of SR observed along the elevational gradient. The S-SDM approach summing binary maps can predict individual species and thus communities, but tends to overpredict SR. The two other S-SDM approaches the summed binomial trials based on predicted probabilities and summed predicted probabilities - do not overpredict richness, but they predict many competing end points of assembly or they lose the individual species predictions, respectively. Furthermore, all S-SDM approaches fail to appropriately reproduce the observed hump-shaped patterns of SR along the elevational gradient.Main conclusions Macroecological approach and S-SDM have complementary strengths. We suggest that both could be used in combination to obtain better SR predictions by following the suggestion of constraining S-SDM by MEM predictions.
Resumo:
The Arabidopsis opr3 mutant is defective in the isoform of 12-oxo-phytodienoate (OPDA) reductase required for jasmonic acid (JA) biosynthesis. Oxylipin signatures of wounded opr3 leaves revealed the absence of detectable 3R,7S-JA as well as altered levels of its cyclopentenone precursors OPDA and dinor OPDA. In contrast to JA-insensitive coi1 plants and to the fad3 fad7 fad8 mutant lacking the fatty acid precursors of JA synthesis, opr3 plants exhibited strong resistance to the dipteran Bradysia impatiens and the fungus Alternaria brassicicola. Analysis of transcript profiles in opr3 showed the wound induction of genes previously known to be JA-dependent, suggesting that cyclopentenones could fulfill some JA roles in vivo. Treating opr3 plants with exogenous OPDA powerfully up-regulated several genes and disclosed two distinct downstream signal pathways, one through COI1, the other via an electrophile effect of the cyclopentenones. We conclude that the jasmonate family cyclopentenone OPDA (most likely together with dinor OPDA) regulates gene expression in concert with JA to fine-tune the expression of defense genes. More generally, resistance to insect and fungal attack can be observed in the absence of JA.
Resumo:
BACKGROUND Phytopharmacological studies of different Calendula extracts have shown anti-inflammatory, anti-viral and anti-genotoxic properties of therapeutic interest. In this study, we evaluated the in vitro cytotoxic anti-tumor and immunomodulatory activities and in vivo anti-tumor effect of Laser Activated Calendula Extract (LACE), a novel extract of the plant Calendula Officinalis (Asteraceae). METHODS An aqueous extract of Calendula Officinalis was obtained by a novel extraction method in order to measure its anti-tumor and immunomodulatory activities in vitro. Tumor cell lines derived from leukemias, melanomas, fibrosarcomas and cancers of breast, prostate, cervix, lung, pancreas and colorectal were used and tumor cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of LACE on human peripheral blood lymphocyte (PBL) proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in LACE-treated cells. In vivo anti-tumor activity was evaluated in nude mice bearing subcutaneously human Ando-2 melanoma cells. RESULTS The LACE extract showed a potent in vitro inhibition of tumor cell proliferation when tested on a wide variety of human and murine tumor cell lines. The inhibition ranged from 70 to 100%. Mechanisms of inhibition were identified as cell cycle arrest in G0/G1 phase and Caspase-3-induced apoptosis. Interestingly, the same extract showed an opposite effect when tested on PBLs and NKL cell line, in which in vitro induction of proliferation and activation of these cells was observed. The intraperitoneal injection or oral administration of LACE extract in nude mice inhibits in vivo tumor growth of Ando-2 melanoma cells and prolongs the survival day of the mice. CONCLUSION These results indicate that LACE aqueous extract has two complementary activities in vitro with potential anti-tumor therapeutic effect: cytotoxic tumor cell activity and lymphocyte activation. The LACE extract presented in vivo anti-tumoral activity in nude mice against tumor growth of Ando-2 melanoma cells.
Resumo:
The biocontrol strain CHA0 of Pseudomonas fluorescens produces small amounts of indole-3-acetic acid via the tryptophan side chain oxidase and the tryptophan transaminase pathways. A recombinant plasmid (pME3468) expressing the tryptophan monooxygenase pathway was introduced into strain CHA0; this resulted in elevated synthesis of indole-3-acetic acid in vitro, especially after addition of -tryptophan. In natural soil, strain CHA0/pME3468 increased fresh root weight of cucumber by 17-36%, compared to the effect of strain CHA0; root colonization was about 106 cells per g of root. However, both strains gave similar protection of cucumber against Pythium ultimum. In autoclaved soil, at 6×107 cells per g of root, strain CHA0 stimulated growth of roots and shoots, whereas strain CHA0/pME3468 caused root stunting and strong reduction of plant weight. These results are in agreement with the known effects of exogenous indole-3-acetic acid on plant roots and suggest that in the system examined, indole-3-acetic acid does not contribute to the biocontrol properties of strain CHA0.
Resumo:
Understanding the distribution and composition of species assemblages and being able to predict them in space and time are highly important tasks io investigate the fate of biodiversity in the current global changes context. Species distribution models are tools that have proven useful to predict the potential distribution of species by relating their occurrences to environmental variables. Species assemblages can then be predicted by combining the prediction of individual species models. In the first part of my thesis, I tested the importance of new environmental predictors to improve species distribution prediction. I showed that edaphic variables, above all soil pH and nitrogen content could be important in species distribution models. In a second chapter, I tested the influence of different resolution of predictors on the predictive ability of species distribution models. I showed that fine resolution predictors could ameliorate the models for some species by giving a better estimation of the micro-topographic condition that species tolerate, but that fine resolution predictors for climatic factors still need to be ameliorated. The second goal of my thesis was to test the ability of empirical models to predict species assemblages' characteristics such as species richness or functional attributes. I showed that species richness could be modelled efficiently and that the resulting prediction gave a more realistic estimate of the number of species than when obtaining it by stacking outputs of single species distribution models. Regarding the prediction of functional characteristics (plant height, leaf surface, seed mass) of plant assemblages, mean and extreme values of functional traits were better predictable than indices reflecting the diversity of traits in the community. This approach proved interesting to understand which environmental conditions influence particular aspects of the vegetation functioning. It could also be useful to predict climate change impacts on the vegetation. In the last part of my thesis, I studied the capacity of stacked species distribution models to predict the plant assemblages. I showed that this method tended to over-predict the number of species and that the composition of the community was not predicted exactly either. Finally, I combined the results of macro- ecological models obtained in the preceding chapters with stacked species distribution models and showed that this approach reduced significantly the number of species predicted and that the prediction of the composition is also ameliorated in some cases. These results showed that this method is promising. It needs now to be tested on further data sets. - Comprendre la manière dont les plantes se répartissent dans l'environnement et s'organisent en communauté est une question primordiale dans le contexte actuel de changements globaux. Cette connaissance peut nous aider à sauvegarder la diversité des espèces et les écosystèmes. Des méthodes statistiques nous permettent de prédire la distribution des espèces de plantes dans l'espace géographique et dans le temps. Ces modèles de distribution d'espèces, relient les occurrences d'une espèce avec des variables environnementales pour décrire sa distribution potentielle. Cette méthode a fait ses preuves pour ce qui est de la prédiction d'espèces individuelles. Plus récemment plusieurs tentatives de cumul de modèles d'espèces individuelles ont été réalisées afin de prédire la composition des communautés végétales. Le premier objectif de mon travail est d'améliorer les modèles de distribution en testant l'importance de nouvelles variables prédictives. Parmi différentes variables édaphiques, le pH et la teneur en azote du sol se sont avérés des facteurs non négligeables pour prédire la distribution des plantes. Je démontre aussi dans un second chapitre que les prédicteurs environnementaux à fine résolution permettent de refléter les conditions micro-topographiques subies par les plantes mais qu'ils doivent encore être améliorés avant de pouvoir être employés de manière efficace dans les modèles. Le deuxième objectif de ce travail consistait à étudier le développement de modèles prédictifs pour des attributs des communautés végétales tels que, par exemple, la richesse en espèces rencontrée à chaque point. Je démontre qu'il est possible de prédire par ce biais des valeurs de richesse spécifiques plus réalistes qu'en sommant les prédictions obtenues précédemment pour des espèces individuelles. J'ai également prédit dans l'espace et dans le temps des caractéristiques de la végétation telles que sa hauteur moyenne, minimale et maximale. Cette approche peut être utile pour comprendre quels facteurs environnementaux promeuvent différents types de végétation ainsi que pour évaluer les changements à attendre au niveau de la végétation dans le futur sous différents régimes de changements climatiques. Dans une troisième partie de ma thèse, j'ai exploré la possibilité de prédire les assemblages de plantes premièrement en cumulant les prédictions obtenues à partir de modèles individuels pour chaque espèce. Cette méthode a le défaut de prédire trop d'espèces par rapport à ce qui est observé en réalité. J'ai finalement employé le modèle de richesse en espèce développé précédemment pour contraindre les résultats du modèle d'assemblage de plantes. Cela a permis l'amélioration des modèles en réduisant la sur-prédiction et en améliorant la prédiction de la composition en espèces. Cette méthode semble prometteuse mais de nouveaux tests sont nécessaires pour bien évaluer ses capacités.
Resumo:
Recent progress in understanding plant defence has highlighted a complex, interacting network of signalling pathways leading to the induction of numerous genes. The advent of new technologies for the global analysis of gene expression is fundamentally affecting research in biology, and studies on plant defence should benefit from these new approaches. Genome-wide microarrays will provide a powerful tool for the discovery of all defence-related genes and should help in elucidating their function. The association of a particular signalling pathway with a defence response can be tested with microarrays and defined mutants. Comparison of transcript profiles after biotic and abiotic stresses reveals overlapping activation of defence-related genes and defines new concepts on how plants cope with multiple aggressions. The combination of expression data with other biochemical or metabolite measurements seems another promising approach. Finally, small-scale, dedicated microarrays containing sets of well-characterised genes might prove to be a very useful complement to more expensive, less accessible, large-scale arrays.
Resumo:
The evolution of senescence (the physiological decline of organisms with age) poses an apparent paradox because it represents a failure of natural selection to increase the survival and reproductive performance of organisms. The paradox can be resolved if natural selection becomes less effective with age, because the death of postreproductive individuals should have diminished effects on Darwinian fitness [1, 2]. A substantial body of empirical work is consistent with this prediction for animals, which transmit their genes to progeny via an immortal germline. However, such evidence is still lacking in plants, which lack a germline and whose reproduction is diffuse and modular across the soma. Here, we provide experimental evidence for a genetic basis of senescence in the short-lived perennial plant Silene latifolia. Our pedigree-based analysis revealed a marked increase with age in the additive genetic variance of traits closely associated with fitness. This result thus extends to plants the quantitative genetic support for the evolutionary theory of senescence.
Resumo:
GTPases of the Rab1 subclass are essential for membrane traffic between the endoplasmic reticulum (ER) and Golgi complex in animals, fungi and plants. Rab1-related proteins in higher plants are unusual because sequence comparisons divide them into two putative subclasses, Rab-D1 and Rab-D2, that are conserved in monocots and dicots. We tested the hypothesis that the Rab-D1 and Rab-D2 proteins of Arabidopsis represent functionally distinct groups. RAB-D1 and RAB-D2a each targeted fluorescent proteins to the same punctate structures associated with the Golgi stacks and trans-Golgi-network. Dominant-inhibitory N121I mutants of each protein inhibited traffic of diverse cargo proteins at the ER but they appeared to act via distinct biochemical pathways as biosynthetic traffic in cells expressing either of the N121I mutants could be restored by coexpressing the wild-type form of the same subclass but not the other subclass. The same interaction was observed in transgenic seedlings expressing RAB-D1 [N121I]. Insertional mutants confirmed that the three Arabidopsis Rab-D2 genes were extensively redundant and collectively performed an essential function that could not be provided by RAB-D1, which was non-essential. However, plants lacking RAB-D1, RAB-D2b and RAB-D2c were short and bushy with low fertility, indicating that the Rab-D1 and Rab-D2 subclasses have overlapping functions.