957 resultados para Pinus elliottii - Manduri, SP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A red-pigmented, radiation-resistant, Gram-negative, rod-shaped bacterium isolated from irradiated pork is described. The D,, values in buffer solution and on pork mince are 3.45 and 5.05 kGy respectively. The strain has been identified as a Deinobacter species

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were conducted to investigate the effects of single and multiple metal contamination (Cd, Pb, Zn, Sb, Cu) on Scots pine seedlings colonised by ectomycorrhizal (ECM) fungi from natural soil inoculum. Seedlings were grown in either contaminated field soil from the site of a chemical accident, soils amended with five metals contaminating the site, or in soil from an uncontaminated control site. Although contaminated and metal-amended soil significantly inhibited root and shoot growth of the Scots pine seedlings, total root tip density was not affected. Of the five metals tested in amended soils, Cd was the most toxic to ECM Scots pine. Field-contaminated soil had a toxic effect on ECM fungi associated with Scots pine seedlings and caused shifts in ECM species composition on ECM seedlings. When compared to soils amended with only one metal, soils amended with a combination of all five metals tested had lower relative toxicity and less accumulation of Pb, Zn and Sb into seedlings. This would indicate that the toxicity of multiple metal contamination cannot be predicted from the individual toxicity of the metals investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

lux-marked biosensors for assessing the toxicity and bioremediation potential of polluted environments may complement traditional chemical techniques. luxCDABE genes were introduced into the chromosome of the 2,4-dichlorophenol (2,4-DCP)-mineralizing bacterium, Burkholderia sp. RASC c2, by biparental mating using the Tn4431 system. Experiments revealed that light output was constitutive and related to cell biomass concentration during exponential growth. The transposon insertion was stable and did not interrupt 2,4-DCP-degradative genes, and expression of luxCDABE did not constitute a metabolic burden to the cell. A bioluminescence response was detectable at sublethal 2,4-DCP concentrations: at <10.26 microg ml(-1), bioluminescence was stimulated (e.g. 218% of control), but at concentrations >60 microg ml(-1) it declined to <1%. Investigating the effect of [14C]-2,4-DCP concentration on the evolution of 14CO2 revealed that, for initial concentrations of 2.5-25 microg ml(-1), approximately equals 55% of the added 14C was mineralized after 24 h compared with

Relevância:

20.00% 20.00%

Publicador:

Resumo:

s-Triazine herbicides are used extensively in South America in agriculture and forestry. In this study, a bacterium designated as strain MHP41, capable of degrading simazine and atrazine, was isolated from agricultural soil in the Quillota valley, central Chile. Strain MHP41 is able to grow in minimal medium, using simazine as the sole nitrogen source. In this medium, the bacterium exhibited a growth rate of mu = 0.10 h(-1), yielding a high biomass of 4.2 x 10(8) CFU mL(-1). Resting cells of strain MHP41 degrade more than 80% of simazine within 60 min. The atzA, atzB, atzC, atzD, atzE and atzF genes encoding the enzymes of the simazine upper and lower pathways were detected in strain MHP41. The motile Gram-negative bacterium was identified as a Pseudomonas sp., based on the Biolog microplate system and comparative sequence analyses of the 16S rRNA gene. Amplified ribosomal DNA restriction analysis allowed the differentiation of strain MHP41 from Pseudomonas sp. ADP. The comparative 16S rRNA gene sequence analyses suggested that strain MHP41 is closely related to Pseudomonas nitroreducens and Pseudomonas multiresinovorans. This is the first s-triazine-degrading bacterium isolated in South America. Strain MHP41 is a potential biocatalyst for the remediation of s-triazine-contaminated environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heritable variation in plant secondary compounds in dominant species has been hypothesised to effect ecosystem function and the structure of associated assemblages of plants, microbes and animals. The functioning of this extended phenotype in relation to the understorey vegetation composition was tested within a boreal forest system dominated by Pinus sylvestris which contains a range of monoterpenes, the composition of which is largely under genetic control. A variance partitioning approach was adopted to identify the relative importance of tree chemistry, environment, spatial location and tree architecture in controlling the distribution of species in the ground flora under individual trees. The monoterpene composition of the pine needles appeared to contribute significantly to controlling understorey vegetation composition, but was less important than environmental factors, though similar to spatial factors. Thus there appears to be a link between variation in the chemical composition of the single, dominant tree species within this system and the pattern of occurrence and abundance in other species at the same trophic level.