765 resultados para Photovoltaic property
Resumo:
This article reviews all the experimental tests carried out to analyze the performance of a FluidReflex photovoltaic concentrator. This novel concentrator concept consists of a single reflective stage immersed in an optical fluid. The presence of the fluid entails significant advantages. It not only allows a high system optical efficiency and increases the attainable concentration but also enhances the heat dissipation from the cell. In addition, the electrical insulation is improved, and the problem of water vapor condensation inside the module is avoided. A complete characterization is addressed in this paper. Among the experimental results, a measured optical efficiency of 83.5% for a concentration of 1035× stands out
Resumo:
Assuring the sustainability of quality in photovoltaic rural electrification programmes involves enhancing the reliability of the components of solar home systems as well as the characterization of the overall programme cost structure. Batteries and photovoltaic modules have a great impact on both the reliability and the cost assessment, the battery being the weakest component of the solar home system and consequently the most expensive element of the programme. The photovoltaic module, despite being the most reliable component, has a significant impact cost-wise on the initial investment, even at current market prices. This paper focuses on the in-field testing of both batteries and photovoltaic modules working under real operating conditions within a sample of 41 solar home systems belonging to a large photovoltaic rural electrification programme with more than 13,000 installed photovoltaic systems. Different reliability parameters such as lifetime have been evaluated, taking into account different factors, for example energy consumption rates, or the manufacturing quality of batteries. A degradation model has been proposed relating both loss of capacity and time of operation. The user e solar home system binomial is also analysed in order to understand the meaning of battery lifetime in rural electrification.
Resumo:
A number of findings have shown that the test procedures currently available to determine the reliability and durability of photovoltaic (PV) modules are insufficient to detect certain problems. To improve these procedures, ongoing research into the actual performance of the modules in the field is required. However, scientific literature contains but few references to field studies of defective modules. This article studies two different localized heating phenomena affecting the PV modules of two large-scale PV plants in Spain. The first problem relates to weak solder joints whilst the second is due to microcracks on the module cells. For both cases, the cause is identified, and consideration is given with regard to the effect on performance, the potential deterioration over time, and a way to detect the problems identified. The findings contained in this paper will prove to be of considerable interest to maintenance personnel at large-scale PV plants and also to those responsible for setting module quality standards and specifications, and even the PV module manufacturers themselves.
Resumo:
Introduction Crystalline silicon technology, from quartz to system Economical and environmental issues Alternatives to cristalline silicon technology Conclusions
Resumo:
Building-integrated Photovoltaics (BIPV) is one of the most promising technologies enabling buildings to generate on-site part of their electricity needs while performing architectural functionalities. A clear example of BIPV products consists of semi-transparent photovoltaic modules (STPV), designed to replace the conventional glazing solutions in building façades. Accordingly, the active building envelope is required to perform multiple requirements such as provide solar shading to avoid overheating, supply solar gains and thermal insulation to reduce heat loads and improve daylight utilization. To date, various studies into STPV systems have focused on their energy performance based on existing simulation programs, or on the modelling, normally validated by limited experimental data, of the STPV modules thermal behaviour. Taking into account that very limited experimental research has been conducted on the energy performance of STPV elements and that the characterization in real operation conditions is necessary to promote an energetically efficient integration of this technology in the building envelope, an outdoor testing facility has been designed, developed and built at the Solar Energy Institute of the Technical University of Madrid. In this work, the methodology used in the definition of the testing facility, its capability and limitations are presented and discussed.
Resumo:
Non-uniform irradiance patterns created by Concentrated Photovoltaics (CPV) concentrators over Multi-Junction Cells (MJC) can originate significant power losses, especially when there are different spectral irradiance distributions over the different MJC junctions. This fact has an increased importance considering the recent advances in 4 and 5 junction cells. This work presents a new CPV optical design, the 9-fold Fresnel Köhler concentrator, prepared to overcome these effects at high concentrations while maintaining a large acceptance angle, paving the way for a future generation of high efficiency CPV systems of 4 and 5 junction cells.
Resumo:
Este trabajo es una contribución a los sistemas fotovoltaicos (FV) con seguimiento distribuido del punto de máxima potencia (DMPPT), una topología que se caracteriza porque lleva a cabo el MPPT a nivel de módulo, al contrario de las topologías más tradicionales que llevan a cabo el MPPT para un número más elevado de módulos, pudiendo ser hasta cientos de módulos. Las dos tecnologías DMPPT que existen en el mercado son conocidos como microinversores y optimizadores de potencia, y ofrecen ciertas ventajas sobre sistemas de MPPT central como: mayor producción en situaciones de mismatch, monitorización individual de cada módulo, flexibilidad de diseño, mayor seguridad del sistema, etc. Aunque los sistemas DMPPT no están limitados a los entornos urbanos, se ha enfatizado en el título ya que es su mercado natural, siendo difícil una justificación de su sobrecoste en grandes huertas solares en suelo. Desde el año 2010 el mercado de estos sistemas ha incrementado notablemente y sigue creciendo de una forma continuada. Sin embargo, todavía falta un conocimiento profundo de cómo funcionan estos sistemas, especialmente en el caso de los optimizadores de potencia, de las ganancias energéticas esperables en condiciones de mismatch y de las posibilidades avanzadas de diagnóstico de fallos. El principal objetivo de esta tesis es presentar un estudio completo de cómo funcionan los sistemas DMPPT, sus límites y sus ventajas, así como experimentos varios que verifican la teoría y el desarrollo de herramientas para valorar las ventajas de utilizar DMPPT en cada instalación. Las ecuaciones que modelan el funcionamiento de los sistemas FVs con optimizadores de potencia se han desarrollado y utilizado para resaltar los límites de los mismos a la hora de resolver ciertas situaciones de mismatch. Se presenta un estudio profundo sobre el efecto de las sombras en los sistemas FVs: en la curva I-V y en los algoritmos MPPT. Se han llevado a cabo experimentos sobre el funcionamiento de los algoritmos MPPT en situaciones de sombreado, señalando su ineficiencia en estas situaciones. Un análisis de la ventaja del uso de DMPPT frente a los puntos calientes es presentado y verificado. También se presenta un análisis sobre las posibles ganancias en potencia y energía con el uso de DMPPT en condiciones de sombreado y este también es verificado experimentalmente, así como un breve estudio de su viabilidad económica. Para ayudar a llevar a cabo todos los análisis y experimentos descritos previamente se han desarrollado una serie de herramientas software. Una siendo un programa en LabView para controlar un simulador solar y almacenar las medidas. También se ha desarrollado un programa que simula curvas I-V de módulos y generador FVs afectados por sombras y este se ha verificado experimentalmente. Este mismo programa se ha utilizado para desarrollar un programa todavía más completo que estima las pérdidas anuales y las ganancias obtenidas con DMPPT en instalaciones FVs afectadas por sombras. Finalmente, se han desarrollado y verificado unos algoritmos para diagnosticar fallos en sistemas FVs con DMPPT. Esta herramienta puede diagnosticar los siguientes fallos: sombras debido a objetos fijos (con estimación de la distancia al objeto), suciedad localizada, suciedad general, posible punto caliente, degradación de módulos y pérdidas en el cableado de DC. Además, alerta al usuario de las pérdidas producidas por cada fallo y no requiere del uso de sensores de irradiancia y temperatura. ABSTRACT This work is a contribution to photovoltaic (PV) systems with distributed maximum power point tracking (DMPPT), a system topology characterized by performing the MPPT at module level, instead of the more traditional topologies which perform MPPT for a larger number of modules. The two DMPPT technologies available at the moment are known as microinverters and power optimizers, also known as module level power electronics (MLPE), and they provide certain advantages over central MPPT systems like: higher energy production in mismatch situations, monitoring of each individual module, system design flexibility, higher system safety, etc. Although DMPPT is not limited to urban environments, it has been emphasized in the title as it is their natural market, since in large ground-mounted PV plants the extra cost is difficult to justify. Since 2010 MLPE have increased their market share steadily and continuing to grow steadily. However, there still lacks a profound understanding of how they work, especially in the case of power optimizers, the achievable energy gains with their use and the possibilities in failure diagnosis. The main objective of this thesis is to provide a complete understanding of DMPPT technologies: how they function, their limitations and their advantages. A series of equations used to model PV arrays with power optimizers have been derived and used to point out limitations in solving certain mismatch situation. Because one of the most emphasized benefits of DMPPT is their ability to mitigate shading losses, an extensive study on the effects of shadows on PV systems is presented; both on the I-V curve and on MPPT algorithms. Experimental tests have been performed on the MPPT algorithms of central inverters and MLPE, highlighting their inefficiency in I-V curves with local maxima. An analysis of the possible mitigation of hot-spots with DMPPT is discussed and experimentally verified. And a theoretical analysis of the possible power and energy gains is presented as well as experiments in real PV systems. A short economic analysis of the benefits of DMPPT has also been performed. In order to aide in the previous task, a program which simulates I-V curves under shaded conditions has been developed and experimentally verified. This same program has been used to develop a software tool especially designed for PV systems affected by shading, which estimates the losses due to shading and the energy gains obtained with DMPPT. Finally, a set of algorithms for diagnosing system faults in PV systems with DMPPT has been developed and experimentally verified. The tool can diagnose the following failures: fixed object shading (with distance estimation), localized dirt, generalized dirt, possible hot-spots, module degradation and excessive losses in DC cables. In addition, it alerts the user of the power losses produced by each failure and classifies the failures by their severity and it does not require the use of irradiance or temperature sensors.
Resumo:
Esta Tesis aborda los problemas de eficiencia de las redes eléctrica desde el punto de vista del consumo. En particular, dicha eficiencia es mejorada mediante el suavizado de la curva de consumo agregado. Este objetivo de suavizado de consumo implica dos grandes mejoras en el uso de las redes eléctricas: i) a corto plazo, un mejor uso de la infraestructura existente y ii) a largo plazo, la reducción de la infraestructura necesaria para suplir las mismas necesidades energéticas. Además, esta Tesis se enfrenta a un nuevo paradigma energético, donde la presencia de generación distribuida está muy extendida en las redes eléctricas, en particular, la generación fotovoltaica (FV). Este tipo de fuente energética afecta al funcionamiento de la red, incrementando su variabilidad. Esto implica que altas tasas de penetración de electricidad de origen fotovoltaico es perjudicial para la estabilidad de la red eléctrica. Esta Tesis trata de suavizar la curva de consumo agregado considerando esta fuente energética. Por lo tanto, no sólo se mejora la eficiencia de la red eléctrica, sino que también puede ser aumentada la penetración de electricidad de origen fotovoltaico en la red. Esta propuesta conlleva grandes beneficios en los campos económicos, social y ambiental. Las acciones que influyen en el modo en que los consumidores hacen uso de la electricidad con el objetivo producir un ahorro energético o un aumento de eficiencia son llamadas Gestión de la Demanda Eléctrica (GDE). Esta Tesis propone dos algoritmos de GDE diferentes para cumplir con el objetivo de suavizado de la curva de consumo agregado. La diferencia entre ambos algoritmos de GDE reside en el marco en el cual estos tienen lugar: el marco local y el marco de red. Dependiendo de este marco de GDE, el objetivo energético y la forma en la que se alcanza este objetivo son diferentes. En el marco local, el algoritmo de GDE sólo usa información local. Este no tiene en cuenta a otros consumidores o a la curva de consumo agregado de la red eléctrica. Aunque esta afirmación pueda diferir de la definición general de GDE, esta vuelve a tomar sentido en instalaciones locales equipadas con Recursos Energéticos Distribuidos (REDs). En este caso, la GDE está enfocada en la maximización del uso de la energía local, reduciéndose la dependencia con la red. El algoritmo de GDE propuesto mejora significativamente el auto-consumo del generador FV local. Experimentos simulados y reales muestran que el auto-consumo es una importante estrategia de gestión energética, reduciendo el transporte de electricidad y alentando al usuario a controlar su comportamiento energético. Sin embargo, a pesar de todas las ventajas del aumento de auto-consumo, éstas no contribuyen al suavizado del consumo agregado. Se han estudiado los efectos de las instalaciones locales en la red eléctrica cuando el algoritmo de GDE está enfocado en el aumento del auto-consumo. Este enfoque puede tener efectos no deseados, incrementando la variabilidad en el consumo agregado en vez de reducirlo. Este efecto se produce porque el algoritmo de GDE sólo considera variables locales en el marco local. Los resultados sugieren que se requiere una coordinación entre las instalaciones. A través de esta coordinación, el consumo debe ser modificado teniendo en cuenta otros elementos de la red y buscando el suavizado del consumo agregado. En el marco de la red, el algoritmo de GDE tiene en cuenta tanto información local como de la red eléctrica. En esta Tesis se ha desarrollado un algoritmo autoorganizado para controlar el consumo de la red eléctrica de manera distribuida. El objetivo de este algoritmo es el suavizado del consumo agregado, como en las implementaciones clásicas de GDE. El enfoque distribuido significa que la GDE se realiza desde el lado de los consumidores sin seguir órdenes directas emitidas por una entidad central. Por lo tanto, esta Tesis propone una estructura de gestión paralela en lugar de una jerárquica como en las redes eléctricas clásicas. Esto implica que se requiere un mecanismo de coordinación entre instalaciones. Esta Tesis pretende minimizar la cantidad de información necesaria para esta coordinación. Para lograr este objetivo, se han utilizado dos técnicas de coordinación colectiva: osciladores acoplados e inteligencia de enjambre. La combinación de estas técnicas para llevar a cabo la coordinación de un sistema con las características de la red eléctrica es en sí mismo un enfoque novedoso. Por lo tanto, este objetivo de coordinación no es sólo una contribución en el campo de la gestión energética, sino también en el campo de los sistemas colectivos. Los resultados muestran que el algoritmo de GDE propuesto reduce la diferencia entre máximos y mínimos de la red eléctrica en proporción a la cantidad de energía controlada por el algoritmo. Por lo tanto, conforme mayor es la cantidad de energía controlada por el algoritmo, mayor es la mejora de eficiencia en la red eléctrica. Además de las ventajas resultantes del suavizado del consumo agregado, otras ventajas surgen de la solución distribuida seguida en esta Tesis. Estas ventajas se resumen en las siguientes características del algoritmo de GDE propuesto: • Robustez: en un sistema centralizado, un fallo o rotura del nodo central provoca un mal funcionamiento de todo el sistema. La gestión de una red desde un punto de vista distribuido implica que no existe un nodo de control central. Un fallo en cualquier instalación no afecta el funcionamiento global de la red. • Privacidad de datos: el uso de una topología distribuida causa de que no hay un nodo central con información sensible de todos los consumidores. Esta Tesis va más allá y el algoritmo propuesto de GDE no utiliza información específica acerca de los comportamientos de los consumidores, siendo la coordinación entre las instalaciones completamente anónimos. • Escalabilidad: el algoritmo propuesto de GDE opera con cualquier número de instalaciones. Esto implica que se permite la incorporación de nuevas instalaciones sin afectar a su funcionamiento. • Bajo coste: el algoritmo de GDE propuesto se adapta a las redes actuales sin requisitos topológicos. Además, todas las instalaciones calculan su propia gestión con un bajo requerimiento computacional. Por lo tanto, no se requiere un nodo central con un alto poder de cómputo. • Rápido despliegue: las características de escalabilidad y bajo coste de los algoritmos de GDE propuestos permiten una implementación rápida. No se requiere una planificación compleja para el despliegue de este sistema. ABSTRACT This Thesis addresses the efficiency problems of the electrical grids from the consumption point of view. In particular, such efficiency is improved by means of the aggregated consumption smoothing. This objective of consumption smoothing entails two major improvements in the use of electrical grids: i) in the short term, a better use of the existing infrastructure and ii) in long term, the reduction of the required infrastructure to supply the same energy needs. In addition, this Thesis faces a new energy paradigm, where the presence of distributed generation is widespread over the electrical grids, in particular, the Photovoltaic (PV) generation. This kind of energy source affects to the operation of the grid by increasing its variability. This implies that a high penetration rate of photovoltaic electricity is pernicious for the electrical grid stability. This Thesis seeks to smooth the aggregated consumption considering this energy source. Therefore, not only the efficiency of the electrical grid is improved, but also the penetration of photovoltaic electricity into the grid can be increased. This proposal brings great benefits in the economic, social and environmental fields. The actions that influence the way that consumers use electricity in order to achieve energy savings or higher efficiency in energy use are called Demand-Side Management (DSM). This Thesis proposes two different DSM algorithms to meet the aggregated consumption smoothing objective. The difference between both DSM algorithms lie in the framework in which they take place: the local framework and the grid framework. Depending on the DSM framework, the energy goal and the procedure to reach this goal are different. In the local framework, the DSM algorithm only uses local information. It does not take into account other consumers or the aggregated consumption of the electrical grid. Although this statement may differ from the general definition of DSM, it makes sense in local facilities equipped with Distributed Energy Resources (DERs). In this case, the DSM is focused on the maximization of the local energy use, reducing the grid dependence. The proposed DSM algorithm significantly improves the self-consumption of the local PV generator. Simulated and real experiments show that self-consumption serves as an important energy management strategy, reducing the electricity transport and encouraging the user to control his energy behavior. However, despite all the advantages of the self-consumption increase, they do not contribute to the smooth of the aggregated consumption. The effects of the local facilities on the electrical grid are studied when the DSM algorithm is focused on self-consumption maximization. This approach may have undesirable effects, increasing the variability in the aggregated consumption instead of reducing it. This effect occurs because the algorithm only considers local variables in the local framework. The results suggest that coordination between these facilities is required. Through this coordination, the consumption should be modified by taking into account other elements of the grid and seeking for an aggregated consumption smoothing. In the grid framework, the DSM algorithm takes into account both local and grid information. This Thesis develops a self-organized algorithm to manage the consumption of an electrical grid in a distributed way. The goal of this algorithm is the aggregated consumption smoothing, as the classical DSM implementations. The distributed approach means that the DSM is performed from the consumers side without following direct commands issued by a central entity. Therefore, this Thesis proposes a parallel management structure rather than a hierarchical one as in the classical electrical grids. This implies that a coordination mechanism between facilities is required. This Thesis seeks for minimizing the amount of information necessary for this coordination. To achieve this objective, two collective coordination techniques have been used: coupled oscillators and swarm intelligence. The combination of these techniques to perform the coordination of a system with the characteristics of the electric grid is itself a novel approach. Therefore, this coordination objective is not only a contribution in the energy management field, but in the collective systems too. Results show that the proposed DSM algorithm reduces the difference between the maximums and minimums of the electrical grid proportionally to the amount of energy controlled by the system. Thus, the greater the amount of energy controlled by the algorithm, the greater the improvement of the efficiency of the electrical grid. In addition to the advantages resulting from the smoothing of the aggregated consumption, other advantages arise from the distributed approach followed in this Thesis. These advantages are summarized in the following features of the proposed DSM algorithm: • Robustness: in a centralized system, a failure or breakage of the central node causes a malfunction of the whole system. The management of a grid from a distributed point of view implies that there is not a central control node. A failure in any facility does not affect the overall operation of the grid. • Data privacy: the use of a distributed topology causes that there is not a central node with sensitive information of all consumers. This Thesis goes a step further and the proposed DSM algorithm does not use specific information about the consumer behaviors, being the coordination between facilities completely anonymous. • Scalability: the proposed DSM algorithm operates with any number of facilities. This implies that it allows the incorporation of new facilities without affecting its operation. • Low cost: the proposed DSM algorithm adapts to the current grids without any topological requirements. In addition, every facility calculates its own management with low computational requirements. Thus, a central computational node with a high computational power is not required. • Quick deployment: the scalability and low cost features of the proposed DSM algorithms allow a quick deployment. A complex schedule of the deployment of this system is not required.
Resumo:
Este trabajo es una contribución a los sistemas fotovoltaicos (FV) con seguimiento distribuido del punto de máxima potencia (DMPPT), una topología que se caracteriza porque lleva a cabo el MPPT a nivel de módulo, al contrario de las topologías más tradicionales que llevan a cabo el MPPT para un número más elevado de módulos, pudiendo ser hasta cientos de módulos. Las dos tecnologías DMPPT que existen en el mercado son conocidos como microinversores y optimizadores de potencia, y ofrecen ciertas ventajas sobre sistemas de MPPT central como: mayor producción en situaciones de mismatch, monitorización individual de cada módulo, flexibilidad de diseño, mayor seguridad del sistema, etc. Aunque los sistemas DMPPT no están limitados a los entornos urbanos, se ha enfatizado en el título ya que es su mercado natural, siendo difícil una justificación de su sobrecoste en grandes huertas solares en suelo. Desde el año 2010 el mercado de estos sistemas ha incrementado notablemente y sigue creciendo de una forma continuada. Sin embargo, todavía falta un conocimiento profundo de cómo funcionan estos sistemas, especialmente en el caso de los optimizadores de potencia, de las ganancias energéticas esperables en condiciones de mismatch y de las posibilidades avanzadas de diagnóstico de fallos. El principal objetivo de esta tesis es presentar un estudio completo de cómo funcionan los sistemas DMPPT, sus límites y sus ventajas, así como experimentos varios que verifican la teoría y el desarrollo de herramientas para valorar las ventajas de utilizar DMPPT en cada instalación. Las ecuaciones que modelan el funcionamiento de los sistemas FVs con optimizadores de potencia se han desarrollado y utilizado para resaltar los límites de los mismos a la hora de resolver ciertas situaciones de mismatch. Se presenta un estudio profundo sobre el efecto de las sombras en los sistemas FVs: en la curva I-V y en los algoritmos MPPT. Se han llevado a cabo experimentos sobre el funcionamiento de los algoritmos MPPT en situaciones de sombreado, señalando su ineficiencia en estas situaciones. Un análisis de la ventaja del uso de DMPPT frente a los puntos calientes es presentado y verificado. También se presenta un análisis sobre las posibles ganancias en potencia y energía con el uso de DMPPT en condiciones de sombreado y este también es verificado experimentalmente, así como un breve estudio de su viabilidad económica. Para ayudar a llevar a cabo todos los análisis y experimentos descritos previamente se han desarrollado una serie de herramientas software. Una siendo un programa en LabView para controlar un simulador solar y almacenar las medidas. También se ha desarrollado un programa que simula curvas I-V de módulos y generador FVs afectados por sombras y este se ha verificado experimentalmente. Este mismo programa se ha utilizado para desarrollar un programa todavía más completo que estima las pérdidas anuales y las ganancias obtenidas con DMPPT en instalaciones FVs afectadas por sombras. Finalmente, se han desarrollado y verificado unos algoritmos para diagnosticar fallos en sistemas FVs con DMPPT. Esta herramienta puede diagnosticar los siguientes fallos: sombras debido a objetos fijos (con estimación de la distancia al objeto), suciedad localizada, suciedad general, posible punto caliente, degradación de módulos y pérdidas en el cableado de DC. Además, alerta al usuario de las pérdidas producidas por cada fallo y no requiere del uso de sensores de irradiancia y temperatura. ABSTRACT This work is a contribution to photovoltaic (PV) systems with distributed maximum power point tracking (DMPPT), a system topology characterized by performing the MPPT at module level, instead of the more traditional topologies which perform MPPT for a larger number of modules. The two DMPPT technologies available at the moment are known as microinverters and power optimizers, also known as module level power electronics (MLPE), and they provide certain advantages over central MPPT systems like: higher energy production in mismatch situations, monitoring of each individual module, system design flexibility, higher system safety, etc. Although DMPPT is not limited to urban environments, it has been emphasized in the title as it is their natural market, since in large ground-mounted PV plants the extra cost is difficult to justify. Since 2010 MLPE have increased their market share steadily and continuing to grow steadily. However, there still lacks a profound understanding of how they work, especially in the case of power optimizers, the achievable energy gains with their use and the possibilities in failure diagnosis. The main objective of this thesis is to provide a complete understanding of DMPPT technologies: how they function, their limitations and their advantages. A series of equations used to model PV arrays with power optimizers have been derived and used to point out limitations in solving certain mismatch situation. Because one of the most emphasized benefits of DMPPT is their ability to mitigate shading losses, an extensive study on the effects of shadows on PV systems is presented; both on the I-V curve and on MPPT algorithms. Experimental tests have been performed on the MPPT algorithms of central inverters and MLPE, highlighting their inefficiency in I-V curves with local maxima. An analysis of the possible mitigation of hot-spots with DMPPT is discussed and experimentally verified. And a theoretical analysis of the possible power and energy gains is presented as well as experiments in real PV systems. A short economic analysis of the benefits of DMPPT has also been performed. In order to aide in the previous task, a program which simulates I-V curves under shaded conditions has been developed and experimentally verified. This same program has been used to develop a software tool especially designed for PV systems affected by shading, which estimates the losses due to shading and the energy gains obtained with DMPPT. Finally, a set of algorithms for diagnosing system faults in PV systems with DMPPT has been developed and experimentally verified. The tool can diagnose the following failures: fixed object shading (with distance estimation), localized dirt, generalized dirt, possible hot-spots, module degradation and excessive losses in DC cables. In addition, it alerts the user of the power losses produced by each failure and classifies the failures by their severity and it does not require the use of irradiance or temperature sensors.
Resumo:
Anew, simple, and quick-calculationmethodology to obtain a solar panel model, based on the manufacturers’ datasheet, to perform MPPT simulations, is described. The method takes into account variations on the ambient conditions (sun irradiation and solar cells temperature) and allows fast MPPT methods comparison or their performance prediction when applied to a particular solar panel. The feasibility of the described methodology is checked with four different MPPT methods applied to a commercial solar panel, within a day, and under realistic ambient conditions.
Resumo:
At present, engineering problems required quite a sophisticated calculation means. However, analytical models still can prove to be a useful tool for engineers and scientists when dealing with complex physical phenomena. The mathematical models developed to analyze three different engineering problems: photovoltaic devices analysis; cup anemometer performance; and high-speed train pressure wave effects in tunnels are described. In all cases, the results are quite accurate when compared to testing measurements.
Resumo:
In some countries photovoltaic (PV) technology is at a stage of development at which it can compete with conventional electricity sources. A case in point is Germany where PV market has reached a mature stage. As a manifest of this, the German government has recently reduced the feed-in-tariff, which had been the strongest driver of PV diffusion. This development raises a fundamental question: Why would potential adopters be motivated to adopt PV when feed-in tariff diminishes? The point of departure for the literature on diffusion of PV has been on the effect of subsidies but little attention has paid to adopter motives when the policy support is scaled down. This paper presents an in-depth analysis of the adopter motives for photovoltaic applications. Anchored in an extensive exploratory case study we provide an encompassing explanation of roles of policy, adopters and system suppliers on diffusion of PV.
Resumo:
The dielectrophoretic potential generated near the surface of a z-cut LiNbO3 by photovoltaic charge transport has been calculated for first time. The procedure and results are compared with the ones corresponding to x-cut. Diferences in the position, sharpness and time evolution are reported, and their implication on particle trapping are discussed.
Resumo:
In this paper, a methodology for the integral energy performance characterization (thermal, daylighting and electrical behavior) of semi-transparent photovoltaic modules (STPV) under real operation conditions is presented. An outdoor testing facility to analyze simultaneously thermal, luminous and electrical performance of the devices has been designed, constructed and validated. The system, composed of three independent measurement subsystems, has been operated in Madrid with four prototypes of a-Si STPV modules, each one corresponding to a specific degree of transparency. The extensive experimental campaign, continued for a whole year rotating the modules under test, has validated the reliability of the testing facility under varying environmental conditions. The thermal analyses show that both the solar protection and insulating properties of the laminated prototypes are lower than those achieved by a reference glazing whose characteristics are in accordance with the Spanish Technical Building Code. Daylighting analysis shows that STPV elements have an important lighting energy saving potential that could be exploited through their integration with strategies focused to reduce illuminance values in sunny conditions. Finally, the electrical tests show that the degree of transparency is not the most determining factor that affects the conversion efficiency.
Resumo:
Within the building energy saving strategies, BIPV (building integrated photovoltaic systems) present a promising potential based on the close relationship existing between these multifunctional systems and the overall building energy balance. Building integration of STPV (semi-transparent photovoltaic) elements affects deeply the building energy demand since it influences the heating, cooling and lighting loads as well as the local electricity generation. This work analyses over different window-to-wall ratios the overall energy performance of five STPV elements, each element having a specific degree of transparency, in order to assess the energy saving potential compared to a conventional solar control glass compliant with the local technical standard. The prior optical characterization, focused to measure the spectral properties of the elements, was experimentally undertaken. The obtained data were used to perform simulations based on a reference office building using a package of specific software tools (DesignBuilder, EnergyPlus, PVsyst, and COMFEN) to take proper account of the STPV peculiarities. To evaluate the global energy performance of the STPV elements a new Energy Balance Index was formulated. The results show that for intermediate and large façade openings the energy saving potential provided by the STPV solutions ranges between 18% and 59% compared to the reference glass.