945 resultados para Peripheral refraction
Resumo:
Over the last decade pockmarks have proven to be important seabed features that provide information about fluid flow on continental margins. Their formation and dynamics are still poorly constrained due to the lack of proper three dimensional imaging of their internal structure. Numerous fluid escape features provide evidence for an active fluid-flow system on the Norwegian margin, specifically in the Nyegga region. In June-July 2006 a high-resolution seismic experiment using Ocean Bottom Seismometers (OBS) was carried out to investigate the detailed 3D structure of a pockmark named G11 in the region. An array of 14 OBS was deployed across the pockmark with 1 m location accuracy. Shots fired from surface towed mini GI guns were also recorded on a near surface hydrophone streamer. Several reflectors of high amplitude and reverse polarity are observed on the profiles indicating the presence of gas. Gas hydrates were recovered with gravity cores from less than a meter below the seafloor during the cruise. Indications of gas at shallow depths in the hydrate stability field show that methane is able to escape through the water-saturated sediments in the chimney without being entirely converted into gas hydrate. An initial 2D raytraced forward model of some of the P wave data along a line running NE-SW across the G11 pockmark shows, a gradual increase in velocity between the seafloor and a gas charged zone lying at ~300 m depth below the seabed. The traveltime fit is improved if the pockmark is underlain by velocities higher than in the surrounding layer corresponding to a pipe which ascends from the gas zone, to where it terminates in the pockmark as seen in the reflection profiles. This could be due to the presence of hydrates or carbonates within the sediments.
Resumo:
Leonhardt demonstrated (2009) that the 2D Maxwell Fish Eye lens (MFE) can focus perfectly 2D Helmholtz waves of arbitrary frequency, i.e., it can transport perfectly an outward (monopole) 2D Helmholtz wave field, generated by a point source, towards a receptor called "perfect drain" (PD) located at the corresponding MFE image point. The PD has the property of absorbing the complete radiation without radiation or scattering and it has been claimed as necessary to obtain super-resolution (SR) in the MFE. However, a prototype using a "drain" different from the PD has shown λ/5 resolution for microwave frequencies (Ma et al, 2010). Recently, the SR properties of a device equivalent to the MFE, called the Spherical Geodesic Waveguide (SGW) (Miñano et al, 2012) have been analyzed. The reported results show resolution up to λ /3000, for the SGW loaded with the perfect drain, and up to λ /500 f for the SGW without perfect drain. The perfect drain was realized as a coaxial probe loaded with properly calculated impedance. The SGW provides SR only in a narrow band of frequencies close to the resonance Schumann frequencies. Here we analyze the SGW loaded with a small "perfect drain region" (González et al, 2011). This drain is designed as a region made of a material with complex permittivity. The comparative results show that there is no significant difference in the SR properties for both perfect drain designs.