999 resultados para Peptide hydrolysis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A terminally protected acyclic tetrapeptide Boc-Aib-Val-Aib-beta-Ala-OMe 1 (Aib: alpha-aminoisobutyric acid, beta-Ala: beta-Alanine) self-assembles into a continuous hydrogen-bonded supramolecular helix with an average diameter of 10Angstrom (1nm) starting from a double bend molecular conformation in crystals and further self-assembly of this supramolecular architecture leads to the formation of polydisperse nanorods of diameters 10-40 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important factor in many diseases based on the deposition of amyloids is the fibrillization of peptides. Furthermore, fibril formation also promises applications in bionanotechnology: fibrillar peptide hydrogels can be made for cell scaffolds and as substrates for functional and responsive biomaterials, biosensors, and nanowires. The mechanisms and kinetics of fibril formation are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-assembly in aqueous solution of hybrid block copolymers consisting of amphiphilic β-strand peptide sequences flanked by one or two PEG chains was investigated by means of circular dichroism spectroscopy, small-angle X-ray scattering, and transmission electron microscopy. In comparison with the native peptide sequence, it was found that the peptide secondary structure was stabilized against pH variation in the di-and tri-block copolymers with PEG. Small-angle X-ray scattering indicated the presence of fibrillar structures, the dimensions of which are comparable to the estimated width of a β-strand (with terminal PEG chains in the case of the copolymers). Transmission electron microscopy on selectively stained and dried specimens shows directly the presence of fibrils. It is proposed that these fibrils result from the hierarchical self-assembly of peptide β-strands into helical tapes, which then stack into fibrils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of poly(ethylene glycol) PEG crystallization on P-sheet fibril formation is studied for a series of three peptide/PEG conjugates containing fragments modified from the amyloid P peptide, specifically KLVFF, FFKLVFF, and AAKLVFF. These are conjugated to PEG with M-n = 3300 g mol(-1). It is found, via small-angle X-ray scattering,X-ray diffraction, atomic force microscopy, and polarized optical microscopy, that PEG crystallinity in dried samples can disturb fibrillization, in particular cross-P amyloid structure formation, for the conjugate containing the weak fibrillizer KLVFF, whereas this is retained for the conjugates containing the stronger fibrillizers AAKLVFF and FFKLVFF. For these two samples, the alignment of peptide fibrils also drives the orientation of the attached PEG chains. Our results highlight the importance of the antagonistic effects of PEG crystallization and peptide fibril formation in PEG/peptide conjugates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-assembly in aqueous solution of a PEG-peptide conjugate is studied by spectroscopy, electron microscopy, rheology and small-angle Xray and neutron scattering (SAXS and SANS). The peptide fragment, FFKLVFF is based on fragment KLVFF of the amyloid beta-peptide, A beta(16-20), extended by two hydrophobic phenylalanine units. This is conjugated to PEG which confers water solubility and leads to distinct self-assembled structures. Small-angle scattering reveals the formation of cylindrical fibrils comprising a peptide core and PEG corona. This constrained structure leads to a model parallel beta-sheet self-assembled structure with a radial arrangement of beta sheets. Oil increasing concentration, successively nematic and hexagonal columnar phases are formed. The flow-induced alignment of both structures was studied in situ by SANS using a Couette cell. Shear-induced alignment is responsible for the shear thinning behaviour observed by dynamic shear rheometry. Incomplete recovery of moduli after cessation of shear is consistent with the observation from SANS of retained orientation in the sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nematic and hexagonal columnar liquid crystal phase formation by a PEG-peptide conjugate is reported. The results are relevant to peptide-polymer Conjugates and bionanomaterial self-assembly (with relevance to PEGylated peptides used in therapeutic applications). The use of modified fragments of the amyloid beta peptide is especially interesting with respect to amyloid fibrillization and its control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The orientational ordering of the nematic phase of a polyethylene glycol (PEG)-peptide block copolymer in aqueous solution is probed by small-angle neutron scattering (SANS), with the sample subjected to steady shear in a Couette cell. The PEG-peptide conjugate forms fibrils that behave as semiflexible rodlike chains. The orientational order parameters (P) over bar (2) and (P) over bar (4) are obtained by modeling the data using a series expansion approach to the form factor of uniform cylinders. The method used is independent of assumptions on the form of the singlet orientational distribution function. Good agreement with the anisotropic two-dimensional SANS patterns is obtained. The results show shear alignment starting at very low shear rates, and the orientational order parameters reach a plateau at higher shear rates with a pseudologarithmic dependence on shear rate. The most probable distribution functions correspond to fibrils parallel to the flow direction under shear, but a sample at rest shows a bimodal distribution with some of the rodlike peptide fibrils oriented perpendicular to the flow direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3-Substituted-5-phenylmorpholinones have been demonstrated to act as N-protected C-terminus activated alpha-amino acids capable of undergoing solution phase N-terminus peptide extension following standard coupling procedures. The N-acylated morpholinones do not undergo epimerisation of the stereocentre of the C-terminus amino acid residue as oxazolone formation is sterically prevented, although C-terminus peptide coupling is still possible. This convergent approach to peptide synthesis is exemplified by the preparation of L-ala-L-ala-L-ala and L-ala-D-ala-L-ala. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates dendritic peptides capable of assembling into nanostructured gels, and explores the effect on self-assembly of mixing different molecular building blocks. Thermal measurements, small angle Xray scattering (SAXS) and circular dichroism (CD) spectroscopy are used to probe these materials on macroscopic, nanoscopic and molecular length scales. The results from these investigations demonstrate that in this case, systems with different "size" and "chirality" factors can self-organise, whilst systems with different "shape" factors cannot. The "size" and "chirality" factors are directly connected with the molecular information programmed into the dendritic peptides, whilst the shape factor depends on the group linking these peptides together-this is consistent with molecular recognition hydrogen bond pathways between the peptidic building blocks controlling the ability of these systems to self-recognise. These results demonstrate that mixtures of relatively complex peptides, with only subtle differences on the molecular scale, can self-organise into nanoscale structures, an important step in the spontaneous assembly of ordered systems from complex mixtures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three tripeptides Boc-Phe-Aib-Val-OMe (1), Boc-Leu-Aib-p-NA-NO2 (2) and Boc-Pro-Aib-m-NA-NO2 (3) (Aib: alpha-aminoisobutyric acid; p- and m-NA: para- and meta-nitroaniline) have been designed by incorporating aromatic rings to study the self-assembly and fibril formation. Single crystal X-ray diffraction studies show that all the peptides adopt turn-like structures that are self-assembled through intermolecular hydrogen bonds and van der Waals interactions to create layers of beta-sheets. Solvent dependent NMR titration and CD studies show that the turn structures of the peptides also exist in the solution phase. The field emission scanning electron microscopic (FE-SEM) images of the peptides in the solid state reveal fibrillar structures of flat morphology that are formed through beta-sheet mediated self-assembly of the preorganized turn building blocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biologically-inspired peptide sequences have been explored as auxiliaries to mediate self-assembly of synthetic macromolecules into hierarchically organized solution and solid state nanostructures. Peptide sequences inspired by the coiled coil motif and "switch" peptides, which can adopt both amphiphilic alpha-helical and beta-strand conformations, were conjugated to poly(ethylene glycol) (PEG). The solution and solid state self-assembly of these materials was investigated using a variety of spectroscopic, scattering and microscopic techniques. These experiments revealed that the folding and organization properties of the peptide sequences are retained upon conjugation of PEG and that they provide the driving force for the formation of the different nanoscale structures which were observed. The possibility of using defined peptide sequences to direct structure formation of synthetic polymers together with the potential of peptide sequences to induce a specific biological response offers interesting prospects for the development of novel self-assembled and biologically active materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-assembly of a modified fragment of the amyloid beta peptide, based on sequence A beta(16-20), KLVFF, extended to give AAKLVFF is studied in methanol. Self-assembly into peptide nanotubes is observed, as confirmed by electron microscopy and small-angle X-ray scattering. The secondary structure of the peptide is probed by FTIR and circular dichroism, and UV/visible spectroscopy provides evidence for the important role of aromatic interactions between phenylalanine residues in driving beta-sheet self-assembly. The beta-sheets wrap helically to form the nanotubes, the nanotube wall comprising four wrapped beta-sheets. At higher concentration, the peptide nanotubes form a nematic phase that exhibits spontaneous flow alignment as observed by small-angle neutron scattering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ordered nanostructures are observed in the melt and solid state for a series of three peptide/PEG conjugates containing fragments of amyloid beta-peptides. These are conjugated to PEG with (M) over bar (n) = 3 300 g.mol(-1) and a melting temperature T-m = 45-50 degrees C. The morphology at room temperature is examined by AFM and POM. This shows spherulite formation for the weakly fibrillizing KLVFF-PEG sample but fibril formation for FFKLVFF-PEG. The fibrillization tendency of the latter is enhanced by multiple phenylalanine residues. Simultaneous SAXS and WAXS was used to investigate the morphology as a function of temperature. The secondary structure is probed by FTIR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bis(o-hydroxyacetophenone)nickel(II) dihydrate, on reaction with 1,3-pentanediamine, yields a bis-chelate complex [NiL2]center dot 2H(2)O (1) of mono-condensed tridentate Schiff base ligand HL {2-[1-(3-aminopentylimino)ethyl]phenol}. The Schiff base has been freed from the complex by precipitating the Nil, as a dimethylglyoximato complex. HL reacts smoothly with Ni(SCN)(2)center dot 4H(2)O furnishing the complex [NiL(NCS)] (2) and with CuCl2 center dot 2H(2)O in the presence of NaN3 or NH4SCN producing [CuL(N-3)](2) (3) or [CuL(NCS)] (4). On the other hand, upon reaction with Cu(ClO4)(2)center dot 6H(2)O and Cu(NO3)(2)center dot 3H(2)O, the Schiff base undergoes hydrolysis to yield ternary complexes [Cu(hap)(pn)(H2O)]ClO4 (5) and [Cu(hap)(pn)(H2O)]NO3 (6), respectively (Hhap = o-hydroxyacetophenone and pn = 1,3-pentanediamine). The ligand HL undergoes hydrolysis also on reaction with Ni(ClO4)(2)center dot 6H(2)O or Ni(NO3)(2)center dot 6H(2)O to yield [Ni(hap)(2)] (7). The structures of the complexes 2, 3, 5, 6, and 7 have been confirmed by single-crystal X-ray analysis. In complex 2, Ni-II possesses square-planar geometry, being coordinated by the tridentate mono-negative Schiff base, L and the isothiocyanate group. The coordination environment around Cu-II in complex 3 is very similar to that in complex 2 but here two units are joined together by end-on, axial-equatorial azide bridges to result in a dimer in which the geometry around Cu-II is square pyramidal. In both 5 and 6, the Cu-II atoms display the square-pyramidal environment; the equatorial sites being coordinated by the two amine groups of 1,3-pentanediamine and two oxygen atoms of o-hydroxyacetophenone. The axial site is coordinated by a water molecule. Complex 7 is a square-planar complex with the Ni atom bonded to four oxygen atoms from two hap moieties. The mononuclear units of 2 and dinuclear units of 3 are linked by strong hydrogen bonds to form a one-dimensional network. The mononuclear units of 5 and 6 are joined together to form a dimer by very strong hydrogen bonds through the coordinated water molecule. These dimers are further involved in hydrogen bonding with the respective counteranions to form 2-D net-like open frameworks. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A water-soluble tripeptide Val-Ile-Ala (VIA) 1, bearing sequence identity with the C-terminal portion of the Alzheimer A beta-peptide (A beta(40-42)), self-assembles, in crystalline form, to produce an intermolecularly hydrogen bonded supramolecular beta-sheet structure which self-associates to form straight, unbranched nanofibrils exhibiting amyloid-like behavior; in contrast, the synthetic tripeptide Ala-Val-Ile (AVI) 2 self-assembles to produce a beta-sheet structure that forms branched nanofibrils which do not show any characteristic features of amyloid-like fibrils.