937 resultados para Pavements, Prestressed concrete.
Resumo:
The Iowa DOT has been using the "Iowa Method" thin bonded low-slump dense Portland Cement Concrete (PCC) bridge deck overlay for rehabilitation of delaminated decks since 1963. In time, continued use of studded tires will wear away the transverse grooved texture. The objective of this research was to evaluate the benefit of incorporating a hard durable aggregate into a dense PCC overlay to provide frictional property longevity. The project included three overlays on I-35 near Ankeny. The texture and friction properties of two overlays, one constructed with crushed granite and the other with crushed quartzite coarse aggregate, were compared to an overlay constructed with locally available crushed limestone. There were no construction problems resulting from the use of crushed granite or quartzite. There was no significant frictional property benefit from the crushed granite or crushed quartzite through six years.
Resumo:
The purpose of this report is to describe the major research activities during the period of February 1, 1985 - October 30, 1986 for the Iowa Highway Research Board under the research contract entitled "Development of a Conductometric Test for Frost Resistance of Concrete." The objective of this research, as stated in the project proposal, is to develop a test method which can be reasonably rapidly performed in the laboratory and in the field to predict the behavior of concrete subjected to the action of alternate freezing and thawing with a high degree of certainty. In the work plan of the proposal it was stated that the early part of the first year would be devoted to construction of testing equipment and preparation of specimens and the remainder of the year would be devoted to the testing of specimens. It was also stated that the second and third years would be devoted to performance and refinements of tests, data analysis, preparation of suggested specifications, and performance of tests covering variables which need to be studied such as types of aggregates, fly ash replacements and other admixtures. The objective of this report is to describe the progress made during the first 20 months of this project and assess the significance of the results obtained thus far and the expected significance of the results obtainable during the third year of the project.
Resumo:
Concern about premature joint sealant failures occurring in portland cement concrete (PCC) pavements gave impetus to initiating this research project. Eight sealants, including three silicone sealants, were evaluated and tested in the lab as well as incorporated in approximately 700 joints in the field and evaluated over a six-year period. The preliminary data show that among the silicone sealants, Dow Corning 888 rated the highest. However, this was rated third overall behind the W. R. Meadows cold-applied Sof Seal and Crafco #231 hot pour sealants. The W. R. Meadows and Crafco sealants cost approximately 30 percent and 50 percent less to furnish and place than the Dow Corning product. All joint sealants will continue to be evaluated.
Resumo:
The crack and seat (C & S) method of rehabilitating concrete pavements has been proposed to reduce the incidence of reflective cracking in asphalt overlays. These cracked pieces help reduce the thermal effects on lateral joint movement while the seating of slab pieces reduces vertical movement. This 1986 project demonstrated that a 0.6 m x 0.9 m (2 ft x 3 ft) cracking pattern was optimal to retard reflective cracking in an asphalt overlay. The best performance among three C & S test sections was section 4 with a 0.6 m x 0.9 m (2 ft x 3 ft) cracking pattern and 7.6 cm (3 in) overlay. Structural ratings determined from the Road Rater™ indicated little difference between each C & S section with varying AC thicknesses and crack spacings. Although reflection cracking is reduced in the early years after construction, the effectiveness of the C & S method diminishes over time.
Resumo:
This report documents work undertaken in the demonstration of a low-cost Automatic Weight and Classification System (AWACS). An AWACS procurement specification and details of the results of the project are also included. The intent of the project is to support and encourage transferring research knowledge to state and local agencies and manufacturers through field demonstrations. Presently available, Weigh-in-Motion and Classification Systems are typically too expensive to permit the wide deployment necessary to obtain representative vehicle data. Piezo electric technology has been used in the United Kingdom and Europe and is believed to be the basic element in a low-cost AWACS. Low-cost systems have been installed at two sites, one in Portland Cement Concrete (PCC) pavement in Iowa and the other in Asphaltic Cement Concrete (ACC) pavement in Minnesota to provide experience with both types of pavement. The systems provide axle weights, gross vehicle weight, axle spacing, vehicle classification, vehicle speed, vehicle count, and time of arrival. In addition, system self-calibration and a method to predict contact tire pressure is included in the system design. The study has shown that in the PCC pavement, the AWACS is capable of meeting the needs of state and federal highway agencies, producing accuracies comparable to many current commercial WIM devices. This is being achieved at a procurement cost of substantially less than currently available equipment. In the ACC pavement the accuracies were less than those observed in the PCC pavement which is concluded to result from a low pavement rigidity at this site. Further work is needed to assess the AWACS performance at a range of sites in ACC pavements.
Resumo:
The major objective of this research project was to use thermal analysis techniques in conjunction with x-ray analysis methods to identify and explain chemical reactions that promote aggregate related deterioration in portland cement concrete. Twenty-two different carbonate aggregate samples were subjected to a chemical testing scheme that included: • bulk chemistry (major, minor and selected trace elements) • bulk mineralogy (minor phases concentrated by acid extraction) • solid-solution in the major carbonate phases • crystallite size determinations for the major carbonate phases • a salt treatment study to evaluate the impact of deicer salts Test results from these different studies were then compared to information that had been obtained using thermogravimetric analysis techniques. Since many of the limestones and dolomites that were used in the study had extensive field service records it was possible to correlate many of the variables with service life. The results of this study have indicated that thermogravimetric analysis can play an important role in categorizing carbonate aggregates. In fact, with modern automated thermal analysis systems it should be possible to utilize such methods on a quality control basis. Strong correlations were found between several of the variables that were monitored in this study. In fact, several of the variables exhibited significant correlations to concrete service life. When the full data set was utilized (n = 18), the significant correlations to service life can be summarized as follows ( a = 5% level): • Correlation coefficient, r, = -0.73 for premature TG loss versus service life. • Correlation coefficient, r, = 0.74 for relative crystallite size versus service life. • Correlation coefficient, r, = 0.53 for ASTM C666 durability factor versus service life. • Correlation coefficient, r, = -0.52 for acid-insoluble residue versus service life. Separation of the carbonate aggregates into their mineralogical categories (i.e., calcites and dolomites) tended to increase the correlation coefficients for some specific variables (r sometimes approached 0.90); however, the reliability of such correlations was questionable because of the small number of samples that were present in this study.
Resumo:
In the main report concerning the role that magnesium may have in highway concrete aggregate, over 20,000 electron microprobe data were obtained, primarily from automated scans, or traverses, across dolomite aggregate grains and the adjacent cement paste. Representative traverses were shown in figures and averages of the data were presented in Table II. In this Appendix, detailed representative and selected analyses of carbonate aggregate only are presented. These analyses were not presented in the main report because they would be interesting to only a few specialists in dolomite· rocks. In this Appendix, individual point analyses of mineral compositions in the paste have been omitted along with dolomite compositions at grain boundaries and cracks. Clay minerals and quartz inclusions in the aggregate are also not included. In the analyses, the first three column headings from left to right show line number, x-axis, and y-axis (Line number is an artifact of the computer print-out for each new traverse. Consecutive line numbers indicate a continuous traverse with distances between each point of 1.5 to a few μ-m. X-axis and y-axis are coordinates on the electron microscope stage). The next columns present weight percent oxide content of FeO, K20, CaO, Si02, Al203, MgO, SrO, BaO, MnO, Na20, and C02 (calculated assuming the number of moles of C02 is equal to the sum of moles of oxides, chiefly CaO and MgO), TOTAL (the sum of all oxides), and total (sum of all oxides excluding COi). In many of the analyses total is omitted.
Resumo:
Concrete paving is often at a disadvantage in terms of pavement type selection due to the time of curing required prior to opening the pavement to traffic. The State of Iowa has been able to reduce traffic delay constraints through material selection and construction methods to date. Methods for monitoring concrete strength gain and quality have not changed since the first concrete pavements were constructed in Iowa. In 1995, Lee County and the Iowa DOT cooperated in a research project, HR-380, to construct a 7.1 mile (11. 43 km) project to evaluate the use of maturity and pulse velocity nondestructive testing (NDT) methods in the estimation of concrete strength gain. The research identified the pros and cons of each method and suggested an instructional memorandum to utilize maturity measurements to meet traffic delay demands. Maturity was used to reduce the traffic delay opening time from 5-7 days to less than 2 days through the implementation of maturity measurements and special traffic control measures. Recommendations on the development of the maturity curve for each project and the location and monitoring of the maturity thermocouples are included. Examples of equipment that could easily be used by project personnel to estimate the concrete strength using the maturity methods is described.
Resumo:
Stopping and turning maneuvers on high traffic volume asphalt cement concrete surfaced roads and streets often cause distortion of the pavement. Distortion may show up as excessive rutting in the wheel path, shoving of the pavement and/or rippling of the surface. Often times repeated corrective work such as cold milling or heater planing is required in these areas to maintain the pavement surface in a reasonable condition. In recent years polymer additives have been developed for asphalt cement concrete paving mixes that show promise in improving the inplace stability of the pavements. AC-13 (Styrelf 13) available from Bitucote Products Company, St. Louis, Missouri is an asphalt cement that has been modified by an additive to exhibit characteristics of very high stability in asphalt mixes.
Resumo:
In 1994 the Iowa Department of Transportation constructed a 7.2-mile Portland Cement Concrete overlay project in Iowa County on Iowa Highway 21. The research work was conducted in cooperation with the Department of Civil Engineering and the Federal Highway Administration under the Iowa Highway Research Board project HR-559. The project was constructed to evaluate the performance of an ultrathin concrete overlay during a 5-year period. The experiment included variables of base surface preparation, overlay depth, joint spacing, fiber reinforcement, and the sealed or non-sealed joints. The project was instrumented to measure overlay/base interface temperatures and strains. Visual distress surveys and deflection testing were also used to monitor performance. Coring and direct shear testing was accomplished 3 times during the research period. Results of the testing and monitoring are identified in the report. The experiment was very successful and the results provide an insight into construction and design needs to be considered in tailoring a portland cement concrete overlay to a performance need. The results also indicate a method to monitor bond with nondestructive methods.
Resumo:
This report discusses the accomplishments of the Center for Portland Cement Concrete Pavement Technology (PCC Center) at Iowa State University, which was founded in April 2000. The report discusses the advisory groups that guide the Center, and describes the facilities included in the Center. The two Center facilities are the PCC Pavement and Materials Research Laboratory and the Mobile Concrete Research Lab. The report details the combined test capability of the Center's two labs, and describes the research undertaken at the Center. Also included in the publication are long-term planning efforts and technology transfer studies.
Resumo:
The objective was to evaluate the usefulness, accuracy, precision, and reproducibility of the second generation CMD for PC concrete under production conditions.
Resumo:
In 1982 the Iowa DOT allowed a successful bidder the option of submitting materials and proportions using fly ash to produce a portland cement concrete (PCC) paving mixture to meet a specified compressive strength. The contractor, Irving F. Jensen, received approval for the use of a concrete mixture utilizing 500 lbs. of portland cement and 88 lbs. of fly ash as a replacement of 88 lbs. of portland cement. The PCC mixture was utilized on the Muscatine County US 61 relocation bypass paved as project F-61-4(32)--20-70. A Class "C" fly ash obtained from the Chillicothe electric generating plant approximately 100 miles away was used in the project. This use of fly ash in lieu of portland cement resulted in a cost savings of $64,500 and an energy savings of approximately 16 billion BTU. The compressive strength of this PCC mixture option was very comparable to concrete mixtures produced without the use of fly ash. The pavement has been performing very well. The substitution of fly ash for 15% of the cement has been allowed as a contractor's option since 1984. Due to the cost savings, it has been used in almost all Iowa PCC paving since that time.
Resumo:
This report summarizes the analysis of transverse cracking in asphalt pavement by a five state study team from Iowa, Kansas, Nebraska, North Dakota, and Oklahoma. The study was initiated under the sponsorship of the Federal Highway Administration and four evaluation conferences were held during the course of the study. Each state conducted a crack inventory on their asphalt pavement. An effort was made to correlate this inventory with numerous factors that were considered to be pertinent to the cracking problem. One state did indicate that there was a correlation between transverse cracking severity and the subsurface geology. The other states were unable to identify any significant factors as being the primary contributors. The analysis of the problem was divided into, (1) mix design, (2) maintenance, and (3) 3R rehabilitation. Many potential factors to be considered were identified under each of these three study divisions. There were many conclusions as to good and bad practices. One major conclusions was that a more effective crack maintenance program with early sealing was essential. Some new practices were suggested as potentially more cost effective in design, construction and maintenance. The interchange of methods and procedures by individual states yielded benefits in that other states selected practices that would be an improvement to their program.
Resumo:
A study of four major concrete pavement joint rehabilitation techniques has been conducted, including: pressure relief joints, full-depth repairs, partial-depth repairs and joint resealing. The products of this research include the following for each technique: a summary of published research, detailed documentation of the design and performance of the 36 projects, conclusions and recommendations of the state highway engineers panel, "Design and Construction Guidelines" and "Guide Specifications." The latter two products are prepared for use by state highway agencies. The results of this study are based upon a review of literature, extensive field surveys and analysis of 36 rehabilitation projects, and the experience of an expert panel of state highway engineers.