969 resultados para Pathogens


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gastro-Intestinal (GI) tract is a unique region in the body. Our innate immune system retains a fine homeostatic balance between avoiding inappropriate inflammatory responses against the myriad commensal microbes residing in the gut while also remaining active enough to prevent invasive pathogenic attack. The intestinal epithelium represents the frontline of this interface. It has long been known to act as a physical barrier preventing the lumenal bacteria of the gastro-intestinal tract from activating an inflammatory immune response in the immune cells of the underlying mucosa. However, in recent years, an appreciation has grown surrounding the role played by the intestinal epithelium in regulating innate immune responses, both in the prevention of infection and in maintaining a homeostatic environment through modulation of innate immune signalling systems. The aim of this thesis was to identify novel innate immune mechanisms regulating inflammation in the GI tract. To achieve this aim, we chose several aspects of regulatory mechanisms utilised in this region by the innate immune system. We identified several commensal strains of bacteria expressing proteins containing signalling domains used by Pattern Recognition Receptors (PRRs) of the innate immune system. Three such bacterial proteins were studied for their potentially subversive roles in host innate immune signalling as a means of regulating homeostasis in the GI tract. We also examined differential responses to PRR activation depending on their sub-cellular localisation. This was investigated based on reports that apical Toll-Like Receptor (TLR) 9 activation resulted in abrogation of inflammatory responses mediated by other TLRs in Intestinal Epithelial Cells (IECs) such as basolateral TLR4 activation. Using the well-studied invasive intra-cellular pathogen Listeria monocytogenes as a model for infection, we also used a PRR siRNA library screening technique to identify novel PRRs used by IECs in both inhibition and activation of inflammatory responses. Many of the PRRs identified in this screen were previously believed not to be expressed in IECs. Furthermore, the same study has led to the identification of the previously uncharacterised TLR10 as a functional inflammatory receptor of IECs. Further analysis revealed a similar role in macrophages where it was shown to respond to intracellular and motile pathogens such as Gram-positive L.monocytogenes and Gram negative Salmonella typhimurium. TLR10 expression in IECs was predominantly intracellular. This is likely in order to avoid inappropriate inflammatory activation through the recognition of commensal microbial antigens on the apical cell surface of IECs. Moreover, these results have revealed a more complex network of innate immune signalling mechanisms involved in both activating and inhibiting inflammatory responses in IECs than was previously believed. This contribution to our understanding of innate immune regulation in this region has several direct and indirect benefits. The identification of several novel PRRs involved in activating and inhibiting inflammation in the GI tract may be used as novel therapeutic targets in the treatment of disease; both for inducing tolerance and reducing inflammation, or indeed, as targets for adjuvant activation in the development of oral vaccines against pathogenic attack.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The overall objective of this thesis is to integrate a number of micro/nanotechnologies into integrated cartridge type systems to implement such biochemical protocols. Instrumentation and systems were developed to interface such cartridge systems: (i) implementing microfluidic handling, (ii) executing thermal control during biochemical protocols and (iii) detection of biomolecules associated with inherited or infectious disease. This system implements biochemical protocols for DNA extraction, amplification and detection. A digital microfluidic chip (ElectroWetting on Dielectric) manipulated droplets of sample and reagent implementing sample preparation protocols. The cartridge system also integrated a planar magnetic microcoil device to generate local magnetic field gradients, manipulating magnetic beads. For hybridisation detection a fluorescence microarray, screening for mutations associated with CFTR gene is printed on a waveguide surface and integrated within the cartridge. A second cartridge system was developed to implement amplification and detection screening for DNA associated with disease-causing pathogens e.g. Escherichia coli. This system incorporates (i) elastomeric pinch valves isolating liquids during biochemical protocols and (ii) a silver nanoparticle microarray for fluorescent signal enhancement, using localized surface plasmon resonance. The microfluidic structures facilitated the sample and reagent to be loaded and moved between chambers with external heaters implementing thermal steps for nucleic acid amplification and detection. In a technique allowing probe DNA to be immobilised within a microfluidic system using (3D) hydrogel structures a prepolymer solution containing probe DNA was formulated and introduced into the microfluidic channel. Photo-polymerisation was undertaken forming 3D hydrogel structures attached to the microfluidic channel surface. The prepolymer material, poly-ethyleneglycol (PEG), was used to form hydrogel structures containing probe DNA. This hydrogel formulation process was fast compared to conventional biomolecule immobilization techniques and was also biocompatible with the immobilised biomolecules, as verified by on-chip hybridisation assays. This process allowed control over hydrogel height growth at the micron scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The global rise in antibiotic resistance is a significant problem facing healthcare professionals. In particular within the cystic fibrosis (CF) lung, bacteria can establish chronic infection and resistance to a wide array of antibiotic therapies. One of the principle pathogens associated with chronic infection in the CF lung is Pseudomonas aeruginosa. P. aeruginosa can establish chronic infection in the CF lung partly through the use of the biofilm mode of growth. This biofilm mode of growth offers a considerable degree of protection from a wide variety of challenges such as the host immune system or antibiotic therapy. The threat posed by the emergence of chronic pathogens is prompting the development of next generation antimicrobials. The biofilm mode of growth is often central to the establishment of chronic infection and the development of antibiotic resistance. Thus, targeting biofilm formation has emerged as one of the principle strategies for the development of next generation antimicrobials. In this thesis two separate approaches were used to identify potential anti - biofilm targets. The first strategy focused on the identification of novel genes with a role in a biofilm formation. High throughput screening identified almost 300 genes which had a role in biofilm formation. A number of these genes were characterised at a phenotypic and a molecular level. The second strategy focused on the identification of compounds capable of inhibiting biofilm formation. A collection of marine sponge isolated bacteria were screened for the ability to inhibit the central pathway regulating biofilm formation, quorum sensing. A number of distinct isolates were identified that had quorum sensing inhibition activity from which, a Pseudomonas isolate was selected for further characterisation. A specific compound capable of inhibiting quorum sensing was identified using chemical analytical technologies in the supernatant of this marine isolate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

M66 an X-ray induced mutant of winter wheat (Triticum aestivum) cv. Guardian exhibits broad-spectrum resistance to powdery mildew (Blumeria graminis f. sp. tritici), yellow rust (Puccinia striiformis f. sp. tritici), and leaf rust (Puccinia recondita f. sp. tritici), along with partial resistance to stagnonospora nodorum blotch (caused by the necrotroph Stagonosporum nodorum) and septoria tritici blotch (caused by the hemibiotroph Mycosphaerella graminicola) compared to the parent plant ‘Guardian’. Analysis revealed that M66 exhibited no symptoms of infection following artificial inoculation with Bgt in the glasshouse after adult growth stage (GS 45). Resistance in M66 was associated with widespread leaf flecking which developed during tillering. Flecking also occurred in M66 leaves without Bgt challenge; as a result grain yields were reduced by approximately 17% compared to ‘Guardian’ in the absence of disease. At the seedling stage, M66 exhibited partial resistance. M66, along with Tht mutants (Tht 12, Tht13), also exhibit increased tolerance to environmental stresses (abiotic), such as drought and heat stress at seedling and adult growth stages, However, adult M66 exhibited increased susceptibility to the aphid Schizaphis graminum compared to ‘Guardian’. Resistance to Bgt in M66 was characterized with increased and earlier H2O2 accumulation at the site of infection which resulted in increased papilla formation in epidermal cells, compared to ‘Guardian’. Papilla formation was associated with reduced pathogen ingress and haustorium formation, indicating that the primary cause of resistance in M66 was prevention of pathogen penetration. Heat treatment at 46º C prior to challenge with Bgt also induced partial disease resistance to Blumeria graminis f. sp. tritici in ‘Guardian’ and M66 seedlings. This was characterized by a delay in primary infection, due to increased production of ROS species, such as hydrogen peroxide, ROS-scavenging enzymes and Hsp70, resulting in cross-linking of cell wall components prior to inoculation. This actively prevented the fungus from penetrating the epidermal cell wall. Proteomics analysis using 2-D gel electrophoresis identified primary and secondary disease resistance effects in M66 including detection of ROS scavenging enzymes (4, 24 hai), such as ascorbate peroxidase and a superoxidase dismutase isoform (CuZnSOD) in M66 which were absent from ‘Guardian’. Chitinase (PR protein) was also upregulated (24 hai) in M66 compared to ‘Guardian’.Monosomic and ditelosomic analysis of M66 revealed that the mutation in M66 is located on the long arm of chromosome 2B (2BL). Chromosome 2BL is known to have key genes involved in resistance to pathogens such as those causing stripe rust and powdery mildew. The TaMloB1 gene, an orthologue of the barley Mlo gene, is also located on chromosome 2BL. Sanger sequencing of part of the coding sequence revealed no deletions in the TaMloB1 gene between ‘Guardian’ and M66.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Through the recognition of potentially harmful stimuli, Toll-like receptors (TLRs) initiate the innate immune response and induce the expression of hundreds of immune and pro-inflammatory genes. TLRs are critical in mounting a defence against invading pathogens however, strict control of TLR signalling is vital to prevent host damage from excessive or prolonged immune activation. In this thesis the role of the IκB protein Bcl (B-cell lymphoma)-3 in the regulation of TLR signalling is investigated. Bcl3-/- mice and cells are hyper responsive to TLR stimulation and are defective in LPS tolerance. Bcl-3 interacts with and blocks the ubiquitination of homodimers of the NF-κB subunit, p50. Through stabilisation of inhibitory p50 homodimers, Bcl-3 negatively regulates NF-κB dependent inflammatory gene transcription following TLR activation. Firstly, we investigated the nature of the interaction between Bcl-3 and p50 and using peptide array technology. Key amino acids required for the formation of the p50:Bcl-3 immunosuppressor complex were identified. Furthermore, we demonstrate for the first time that interaction between Bcl-3 and p50 is necessary and sufficient for the anti-inflammatory properties of Bcl-3. Using the data generated from peptide array analysis we then generated cell permeable peptides designed to mimic Bcl-3 function and stabilise p50 homodimers. These Bcl-3 derived peptides are potent inhibitors of NF-κB dependent transcription activity in vitro and provide a solid basis for the development of novel gene-specific approaches in the treatment of inflammatory diseases. Secondly, we demonstrate that Bcl-3 mediated regulation of TLR signalling is not limited to NF-κB and identify the MAK3K Tumour Progression Locus (Tpl)-2 as a new binding partner of Bcl-3. Our data establishes role for Bcl-3 as a negative regulator of the MAPK-ERK pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clostridium difficile is mainly a nosocomial pathogen and is a significant cause of antibioticassociated diarrhea. It is also implicated in the majority of cases of pseudomembranous colitis. The main etiological agent of C. difficile-associated diarrhea (CDAD) is perturbations to the gut microbiota by broad-spectrum antibiotics. Recently, thuricin CD, a two-peptide narrow spectrum sactibiotic bacteriocin with potent activity against C. difficile has been discovered. It is produced by Bacillus thuringiensis DPC6431. The efficacy of thuricin CD against a range of C. difficile clinical isolates has been determined in the form of minimum inhibitory concentration (MIC) values and compared to metronidazole, vancomycin, ramoplanin and actagardine in this thesis. Furthermore, by assessing paired combinations of the above-mentioned antimicrobials, it was determined that ramoplanin and actagardine function in a synergistic manner against the majority of C. difficile isolates. The functions of the genes in the thuricin CD gene cluster have also been elucidated by cloning the cluster and expressing thuricin CD in a heterologous Bacillus subtilis host and are described herein. In addition, the immunity mechanisms employed by the B. thuringiensis DPC6431 producer to protect itself from the antimicrobial actions of thuricin CD have also been elucidated. It has been shown that a small immunity peptide, TrnI, is involved in thuricin CD immunity, most likely by intercepting the thuricin CD peptides and/or blocking their access to the thuricin CD receptor. This immunity peptide and also the ABC-transporter system TrnFG serve to protect the B. thuringiensis host against thuricin CD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The soft shell clam, Mya arenaria, and the razor clam, Ensis siliqua, are widely distributed in Irish waters. Though the reproductive biology and other aspects of the physiology of these species has been previously investigated, little or no data are currently available on their health status. As this knowledge is essential for correct management of a species, M. arenaria and E. siliqua were examined to assess their current health status using histological and molecular methods, over a period of sixteen months. No pathogens or disease were observed in M. arenaria, and low incidences of Prokaryote inclusions, trematode parasites, Nematopsis spp. and eosinophilic bodies were recorded in razor clams for the first time in Northern European waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Little is known about the biology of the softshell clam in Europe, despite it being identified as a potential species to culture for food in the future. Monthly samples of the softshell clam, Mya arenaria, were collected intertidally from Co. Wexford, Ireland, over a period of sixteen months. The mean weight of sampled individuals was 7 4 ± 4 . 9  g and mean length was 8 . 2 ± 0 . 2  cm. Histological examination revealed a female-to-male ratio of 1 : 1.15. In 2010, M. arenaria at this site matured over the summer months, with both sexes either ripe or spawning by August. A single spawning event was recorded in 2010, completed by November. Two unusually cold winters, followed by a warmer-than-average spring, appear to have affected M. arenaria gametogenesis in this area, potentially affecting the time of spawning, fertilisation success, and recruitment of this species. No hermaphrodites were observed in the samples collected, nor were any pathogens observed. Timing of development and spawning is compared with the coasts of eastern North America and with other European coasts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The role of Fas (CD95) and its ligand, Fas ligand (FasL/CD95L), is poorly understood in the intestine. Whilst Fas is best studies in terms of its function in apoptosis, recent studies suggest that Fas ligation may mediate additional, non-apoptotic functions such as inflammation. Toll like Receptors (TLRs) play an important role in mediating inflammation and homeostasis in the intestine. Recent studies have shown that a level of crosstalk exists between the Fas and TLR signalling pathways but this has not yet been investigated in the intestine. Aim: The aim of this study was to evaluate potential cross-talk between TLRs and Fas/FasL system in intestinal cancer cells. Results: Treatment with TLR4 and TLR5 ligands, but not ligands for TLR2 and TLR9 increased the expression of Fas and FasL in intestinal cancer cells in vitro. Consistent with this, expression of Fas and FasL was reduced in the distal colon tissue from germ-free (GF), TLR4 and TLR5 knock-out (KO) mice but was unchanged in TLR2KO tissue, suggesting that intestinal cancer cells display a degree of specificity in their ability to upregulate Fas and FasL expression in response to TLR ligation. Expression of both Fas and FasL was significantly reduced in TRIF KO tissue, indicating that signalling via TRIF by TLR4 and TLR5 agonists may be responsible for the induction of Fas and FasL expression in intestinal cancer cells. In addition, modulating Fas signalling using agonistic anti-Fas augmented TLR4 and TLR5-mediated tumour necrosis factor alpha (TNFα) and interleukin 8 (IL)-8 production by intestinal cancer cells, suggesting crosstalk occurs between these receptors in these cells. Furthermore, suppression of Fas in intestinal cancer cells reduced the ability of the intestinal pathogens, Salmonella typhimurium and Listeria monocytogenes to induce the expression of IL-8, suggesting that Fas signalling may play a role in intestinal host defence against pathogens. Inflammation is known to be important in colon tumourigenesis and Fas signalling on intestinal cancer cells has been shown to result in the production of inflammatory mediators. Fas-mediated signalling may therefore play a role in colon cancer development. Suppression of tumour-derived Fas by 85% led to a reduction in the tumour volume and changes in tumour infiltrating macrophages and neutrophils. TLR4 signalling has been shown to play a role in colon cancer via the recruitment and activation of alternatively activated immune cells. Given the crosstalk seen between Fas and TLR4 signalling in intestinal cancer cells in vitro, suppressing Fas signalling may enhance the efficacy of TLR4 antagonism in vivo. TLR4 antagonism resulted in smaller tumours with fewer infiltrating neutrophils. Whilst Fas downregulation did not significantly augment the ability of TLR4 antagonism to reduce the final tumour volume, Fas suppression may augment the anti-tumour effects of TLR4 antagonism as neutrophil infiltration was further reduced upon combinatorial treatment. Conclusion: Together, this study demonstrates evidence of a new role for Fas in the intestinal immune response and that manipulating Fas signalling has potential anti-tumour benefit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alternative splicing is a general mechanism for regulating gene expression that affects the RNA products of more than 90% of human genes. Not surprisingly, alternative splicing is observed among gene products of metazoan immune systems, which have evolved to efficiently recognize pathogens and discriminate between "self" and "non-self", and thus need to be both diverse and flexible. In this review we focus on the specific interface between alternative splicing and autoimmune diseases, which result from a malfunctioning of the immune system and are characterized by the inappropriate reaction to self-antigens. Despite the widespread recognition of alternative splicing as one of the major regulators of gene expression, the connections between alternative splicing and autoimmunity have not been apparent. We summarize recent findings connecting splicing and autoimmune disease, and attempt to find common patterns of splicing regulation that may advance our understanding of autoimmune diseases and open new avenues for therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression in a variety of organisms, including insects, vertebrates, and plants. miRNAs play important roles in cell development and differentiation as well as in the cellular response to stress and infection. To date, there are limited reports of miRNA identification in mosquitoes, insects that act as essential vectors for the transmission of many human pathogens, including flaviviruses. West Nile virus (WNV) and dengue virus, members of the Flaviviridae family, are primarily transmitted by Aedes and Culex mosquitoes. Using high-throughput deep sequencing, we examined the miRNA repertoire in Ae. albopictus cells and Cx. quinquefasciatus mosquitoes. RESULTS: We identified a total of 65 miRNAs in the Ae. albopictus C7/10 cell line and 77 miRNAs in Cx. quinquefasciatus mosquitoes, the majority of which are conserved in other insects such as Drosophila melanogaster and Anopheles gambiae. The most highly expressed miRNA in both mosquito species was miR-184, a miRNA conserved from insects to vertebrates. Several previously reported Anopheles miRNAs, including miR-1890 and miR-1891, were also found in Culex and Aedes, and appear to be restricted to mosquitoes. We identified seven novel miRNAs, arising from nine different precursors, in C7/10 cells and Cx. quinquefasciatus mosquitoes, two of which have predicted orthologs in An. gambiae. Several of these novel miRNAs reside within a ~350 nt long cluster present in both Aedes and Culex. miRNA expression was confirmed by primer extension analysis. To determine whether flavivirus infection affects miRNA expression, we infected female Culex mosquitoes with WNV. Two miRNAs, miR-92 and miR-989, showed significant changes in expression levels following WNV infection. CONCLUSIONS: Aedes and Culex mosquitoes are important flavivirus vectors. Recent advances in both mosquito genomics and high-throughput sequencing technologies enabled us to interrogate the miRNA profile in these two species. Here, we provide evidence for over 60 conserved and seven novel mosquito miRNAs, expanding upon our current understanding of insect miRNAs. Undoubtedly, some of the miRNAs identified will have roles not only in mosquito development, but also in mediating viral infection in the mosquito host.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The rate of emergence of human pathogens is steadily increasing; most of these novel agents originate in wildlife. Bats, remarkably, are the natural reservoirs of many of the most pathogenic viruses in humans. There are two bat genome projects currently underway, a circumstance that promises to speed the discovery host factors important in the coevolution of bats with their viruses. These genomes, however, are not yet assembled and one of them will provide only low coverage, making the inference of most genes of immunological interest error-prone. Many more wildlife genome projects are underway and intend to provide only shallow coverage. RESULTS: We have developed a statistical method for the assembly of gene families from partial genomes. The method takes full advantage of the quality scores generated by base-calling software, incorporating them into a complete probabilistic error model, to overcome the limitation inherent in the inference of gene family members from partial sequence information. We validated the method by inferring the human IFNA genes from the genome trace archives, and used it to infer 61 type-I interferon genes, and single type-II interferon genes in the bats Pteropus vampyrus and Myotis lucifugus. We confirmed our inferences by direct cloning and sequencing of IFNA, IFNB, IFND, and IFNK in P. vampyrus, and by demonstrating transcription of some of the inferred genes by known interferon-inducing stimuli. CONCLUSION: The statistical trace assembler described here provides a reliable method for extracting information from the many available and forthcoming partial or shallow genome sequencing projects, thereby facilitating the study of a wider variety of organisms with ecological and biomedical significance to humans than would otherwise be possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The nutrient-sensing Tor pathway governs cell growth and is conserved in nearly all eukaryotic organisms from unicellular yeasts to multicellular organisms, including humans. Tor is the target of the immunosuppressive drug rapamycin, which in complex with the prolyl isomerase FKBP12 inhibits Tor functions. Rapamycin is a gold standard drug for organ transplant recipients that was approved by the FDA in 1999 and is finding additional clinical indications as a chemotherapeutic and antiproliferative agent. Capitalizing on the plethora of recently sequenced genomes we have conducted comparative genomic studies to annotate the Tor pathway throughout the fungal kingdom and related unicellular opisthokonts, including Monosiga brevicollis, Salpingoeca rosetta, and Capsaspora owczarzaki. RESULTS: Interestingly, the Tor signaling cascade is absent in three microsporidian species with available genome sequences, the only known instance of a eukaryotic group lacking this conserved pathway. The microsporidia are obligate intracellular pathogens with highly reduced genomes, and we hypothesize that they lost the Tor pathway as they adapted and streamlined their genomes for intracellular growth in a nutrient-rich environment. Two TOR paralogs are present in several fungal species as a result of either a whole genome duplication or independent gene/segmental duplication events. One such event was identified in the amphibian pathogen Batrachochytrium dendrobatidis, a chytrid responsible for worldwide global amphibian declines and extinctions. CONCLUSIONS: The repeated independent duplications of the TOR gene in the fungal kingdom might reflect selective pressure acting upon this kinase that populates two proteinaceous complexes with different cellular roles. These comparative genomic analyses illustrate the evolutionary trajectory of a central nutrient-sensing cascade that enables diverse eukaryotic organisms to respond to their natural environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Microsporidia are obligate intracellular, eukaryotic pathogens that infect a wide range of animals from nematodes to humans, and in some cases, protists. The preponderance of evidence as to the origin of the microsporidia reveals a close relationship with the fungi, either within the kingdom or as a sister group to it. Recent phylogenetic studies and gene order analysis suggest that microsporidia share a particularly close evolutionary relationship with the zygomycetes. METHODOLOGY/PRINCIPAL FINDINGS: Here we expanded this analysis and also examined a putative sex-locus for variability between microsporidian populations. Whole genome inspection reveals a unique syntenic gene pair (RPS9-RPL21) present in the vast majority of fungi and the microsporidians but not in other eukaryotic lineages. Two other unique gene fusions (glutamyl-prolyl tRNA synthetase and ubiquitin-ribosomal subunit S30) that are present in metazoans, choanoflagellates, and filasterean opisthokonts are unfused in the fungi and microsporidians. One locus previously found to be conserved in many microsporidian genomes is similar to the sex locus of zygomycetes in gene order and architecture. Both sex-related and sex loci harbor TPT, HMG, and RNA helicase genes forming a syntenic gene cluster. We sequenced and analyzed the sex-related locus in 11 different Encephalitozoon cuniculi isolates and the sibling species E. intestinalis (3 isolates) and E. hellem (1 isolate). There was no evidence for an idiomorphic sex-related locus in this Encephalitozoon species sample. According to sequence-based phylogenetic analyses, the TPT and RNA helicase genes flanking the HMG genes are paralogous rather than orthologous between zygomycetes and microsporidians. CONCLUSION/SIGNIFICANCE: The unique genomic hallmarks between microsporidia and fungi are independent of sequence based phylogenetic comparisons and further contribute to define the borders of the fungal kingdom and support the classification of microsporidia as unusual derived fungi. And the sex/sex-related loci appear to have been subject to frequent gene conversion and translocations in microsporidia and zygomycetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reproduction extracts a cost in resources that organisms are then unable to utilize to deal with a multitude of environmental stressors. In the nematode C. elegans, development of the germline shortens the lifespan of the animal and increases its susceptibility to microbial pathogens. Prior studies have demonstrated germline-deficient nematodes to have increased resistance to gram negative bacteria. We show that germline-deficient strains display increased resistance across a broad range of pathogens including gram positive and gram negative bacteria, and the fungal pathogen Cryptococcus neoformans. Furthermore, we show that the FOXO transcription factor DAF-16, which regulates longevity and immunity in C. elegans, appears to be crucial for maintaining longevity in both wild-type and germline-deficient backgrounds. Our studies indicate that germline-deficient mutants glp-1 and glp-4 respond to pathogen infection using common and different mechanisms that involve the activation of DAF-16.