717 resultados para Panel Data Estimation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The estimation of a concentration-dependent diffusion coefficient in a drying process is known as an inverse coefficient problem. The solution is sought wherein the space-average concentration is known as function of time (mass loss monitoring). The problem is stated as the minimization of a functional and gradient-based algorithms are used to solve it. Many numerical and experimental examples that demonstrate the effectiveness of the proposed approach are presented. Thin slab drying was carried out in an isothermal drying chamber built in our laboratory. The diffusion coefficients of fructose obtained with the present method are compared with existing literature results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Proceedings of the 11th Australasian Remote Sensing and Photogrammetry Conference

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An increasing number of neuroimaging studies are concerned with the identification of interactions or statistical dependencies between brain areas. Dependencies between the activities of different brain regions can be quantified with functional connectivity measures such as the cross-correlation coefficient. An important factor limiting the accuracy of such measures is the amount of empirical data available. For event-related protocols, the amount of data also affects the temporal resolution of the analysis. We use analytical expressions to calculate the amount of empirical data needed to establish whether a certain level of dependency is significant when the time series are autocorrelated, as is the case for biological signals. These analytical results are then contrasted with estimates from simulations based on real data recorded with magnetoencephalography during a resting-state paradigm and during the presentation of visual stimuli. Results indicate that, for broadband signals, 50-100 s of data is required to detect a true underlying cross-correlations coefficient of 0.05. This corresponds to a resolution of a few hundred milliseconds for typical event-related recordings. The required time window increases for narrow band signals as frequency decreases. For instance, approximately 3 times as much data is necessary for signals in the alpha band. Important implications can be derived for the design and interpretation of experiments to characterize weak interactions, which are potentially important for brain processing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Distributed Brillouin sensing of strain and temperature works by making spatially resolved measurements of the position of the measurand-dependent extremum of the resonance curve associated with the scattering process in the weakly nonlinear regime. Typically, measurements of backscattered Stokes intensity (the dependent variable) are made at a number of predetermined fixed frequencies covering the design measurand range of the apparatus and combined to yield an estimate of the position of the extremum. The measurand can then be found because its relationship to the position of the extremum is assumed known. We present analytical expressions relating the relative error in the extremum position to experimental errors in the dependent variable. This is done for two cases: (i) a simple non-parametric estimate of the mean based on moments and (ii) the case in which a least squares technique is used to fit a Lorentzian to the data. The question of statistical bias in the estimates is discussed and in the second case we go further and present for the first time a general method by which the probability density function (PDF) of errors in the fitted parameters can be obtained in closed form in terms of the PDFs of the errors in the noisy data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Distributed Brillouin sensing of strain and temperature works by making spatially resolved measurements of the position of the measurand-dependent extremum of the resonance curve associated with the scattering process in the weakly nonlinear regime. Typically, measurements of backscattered Stokes intensity (the dependent variable) are made at a number of predetermined fixed frequencies covering the design measurand range of the apparatus and combined to yield an estimate of the position of the extremum. The measurand can then be found because its relationship to the position of the extremum is assumed known. We present analytical expressions relating the relative error in the extremum position to experimental errors in the dependent variable. This is done for two cases: (i) a simple non-parametric estimate of the mean based on moments and (ii) the case in which a least squares technique is used to fit a Lorentzian to the data. The question of statistical bias in the estimates is discussed and in the second case we go further and present for the first time a general method by which the probability density function (PDF) of errors in the fitted parameters can be obtained in closed form in terms of the PDFs of the errors in the noisy data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrate a novel phase noise estimation scheme for CO-OFDM, in which pilot subcarriers are deliberately correlated to the data subcarriers. This technique reduces the overhead by a factor of 2. © OSA 2014.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Acknowledgments The authors wish to thank the crews, fishermen and scientists who conducted the various surveys from which data were obtained, and Mark Belchier and Simeon Hill for their contributions. This work was supported by the Government of South Georgia and South Sandwich Islands. Additional logistical support provided by The South Atlantic Environmental Research Institute with thanks to Paul Brickle. Thanks to Stephen Smith of Fisheries and Oceans Canada (DFO) for help in constructing bootstrap confidence limits. Paul Fernandes receives funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland), and their support is gratefully acknowledged. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions. We also wish to thank two anonymous referees for their helpful suggestions on earlier versions of this manuscript.