996 resultados para PROBE WMAP OBSERVATIONS
Resumo:
The ion exchange mechanism accompanying the oxidation/reduction processes of cupric hexacyanoferrate-modified platinum electrodes in different aqueous electrolyte solutions has been studied by means of in situ probe beam deflection and the electrochemical quartz crystal microbalance technique. The results demonstrate that the charge neutrality of the film during the reoxidation/reduction process is accomplished predominantly by the movement of cations, but anions and/or solvent are also participator(s). Moreover, in KHC8H4O4 (potassium biphthalate) solution, the EQCM data obtained from chronoamperometry experiment are more complicated than those in KCl and K2SO4 solutions. (C) 1997 Elsevier Science Ltd.
Resumo:
C-60 films, prepared by solution casting, were studied by means of in situ probe beam deflection (PBD) combined with cyclic voltammetry (CV). PBD is a powerful technique for investigation of phenomena at the electrode/electrolyte interface in acetonitrile with quaternary ammonium and alkali metal salts as supporting electrolytes. In tetra-n-butylammonium (TBA(+)) salt solution, a stable CV can be obtained during the first two reduction/reoxidation waves. On reduction, injection of cations to maintain charge balance and dissolution of small amount of C-60(-) (TEA(+)) and/or C-60(2-) (TBA(+))(2) are detected. During the reoxidation process ejection of cations and injection of anions occur simultaneously, especially for the second reoxidation wave. In the case where TBABr is the supporting electrolyte, the accompanied behavior is more complicated than in TBABF(4), TBAClO(4), and TBAPF(6) solutions. A small pair of prewaves in CV are proposed due to oxidation/reduction of C-60 domains but not dissolution/redeposition of C-60 film. Extending the potential scan range to the third reduction wave, no apparent corresponding reoxidation wave is related to the third reduction wave, the electroactivity of the film disappears rapidly and dissolution of C-60 film is observed. In tetraethylammonium (TEA(+)) and NAClO(4) solutions, the electrochemistry of the C-60 films is unstable, and potential scans lead to dissolution of flaking of the film.
Resumo:
Probe beam deflection(PBD) technique together with electrochemical techniques such as cyclic voltammetry was used to study the ion exchange in prussian blue(PB) film and its analogue indium hexacyanoferrate (InHCF) chemically modified electrodes, The ion exchange mechanism of PB was verified as following: K2Fe2+FeI(CN)(6)(-e--K+)reversible arrow(+e-+K+)KFe(3+)Fe(I)(CN)(6)(-xe--xK+)reversible arrow(+xe-+xK+) [Fe3+FeI(CN)(6)](x)[KFe3+FeI(CN)(6)](1-x) where on reduction in contact with an acidic KCl electrolyte, H+ enter PB film before K+. Both the cations and anions participate concurrently in the redox process of InHCF, meanwhile K+ ion plays a major role in the whole charge transfer process of this film with increasing radii of anions.
Resumo:
A novel in-situ spectroelectrochemical technique, the combination of probe beam deflection (PBD) with cyclic voltammetry (CV), was used to study the ion exchange process of prussian blue(PB) modified film electrode in contact with various electrolyte solutions. The ion exchange mechanism was verified as following: (K2Fe2+FeII)(CN)(6) -e(-)-k(+)reversible arrow +e(-)+k(+) (KFe3+FeII)(CN)(6) -ke(-)-xk(+)reversible arrow +xe(-)+kk(+) [(Fe3+FeIII)(CN)(6)](x)[(KFe3+FeII)(CN)(6)](1-x) where on reduction PB film in contact with an acidic KCl electrolyte, it was confirmed that protons enter into the PB film before K+ cations.
Resumo:
Suspended Particulate Matter (SPM) concentrations at various levels within the water column, together with salinity and temperature, were measured using water samples collected from six stations across the Straits of Dover. The sampling programme covered a 16-month period, undertaken during 23 cruises. On the basis of the spatial variability in the concentrations, the water bodies are divided by several boundaries, controlled by tidal and wind conditions. Within the water column, SPM concentrations were higher near the sea bed than in the surface waters. Throughout the cross-section, maximum concentrations occurred adjacent to the coastlines. Temporal variability in the SPM concentration exists on daily and seasonal scales within the coastal waters (4.2 to 74.5 mg L-1): resuspension processes, in response to semi-diurnal tidal cycles (with a period of around 12.4 h) and spring-neap cycles (with a period of 15 days) make significant contributions. Distinctive seasonal/annual concentration changes have also been observed. In the offshore waters, such variability is much less significant (0.9 to 6.0 mg L-1). In the summer the English Coastal Zone is associated with relatively high SPM concentrations: the Central Zone has a low and stable SPM concentration between these zones, there is a Transitional Zone, where there is a rapid response of SPM concentration to wind forcing. Finally, the French Coastal Zone is characterized by variable (sometimes high) SPM concentrations. Because of the zonation, SPM fluxes within the Dover Strait are controlled by different transport mechanisms. Within the Central Zone, the flux can be represented by the product of mean water discharges and SPM concentrations. However, within the coastal zones fluctuations in SPM concentrations on various time-scales must be considered. In order to calculate the maximum and minimum SPM fluxes, 10 cells were divided in the strait. A simple modelling calculation has been proposed for this complex area. The effect of spring-neap tidal cycles and seasonal changes can contribute significantly to the overall flux, which is of the order of 20 x 10(6) t.yr(-1) (through the Dover Strait, towards the North Sea). Such an estimate is higher than most obtained previously. (C) 2000 Ifremer/CNRS/IRD/Editions scientifiques et medicales Elsevier SAS.
Resumo:
Ocean color and sea surface temperature data from Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra satellite are used to study the cross-shelf circulation and transport of suspended sediments in the Yellow and the East China Seas. The ocean color images show a significant turbid water plume extending in the southeast direction from the Subei coasts of China to the shelf edge south of Cheju during fall-winter, suggesting significant cross-shelf currents in the Yellow Sea/East China Sea in winter. The currents transport suspended sediments from the area of the old Huanghe mouth into the Okinawa Trough. Part of the turbid plume joins the Yellow Sea Warm Current to enter the Yellow Sea trough in winter. The satellite images suggest that the time scales of cross-shelf transport and surface-to-subsurface descending of the suspended sediments are a few weeks. The turbid plume grows in fall, reaches its maximum expansion and intensity in winter-spring, and subsides in late spring. In summer, the plume becomes coastally trapped. Substantial interannual variations of the intensity and coverage of the turbid plume are indicated by the observations. In comparison, the Changjiang Diluted Water in summer only transports a small amount of the Changjiang suspended sediment to the outer shelf south of Cheju, which does not enter the Yellow Sea owing to the weak intrusion of the Yellow Sea Warm Current in summer. The dynamics of the cross-shelf circulation in the Yellow Sea in winter are hypothesized to be associated with (1) the convergence of the Yellow Sea Coastal Current and the Taiwan Warm Current off the Changjiang mouth and (2) the time-dependent forcing of the northerly wind bursts that drives the intrusion of the Yellow Sea Warm Current. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
To discuss the intrusion of the Kuroshio into the SCS, we examined the mixing between the North Pacific and South China Sea (SCS) waters based on in-situ CTD data collected in August and September 2008 and the moored ADCP data taken from mid September 2008 to early July 2009. The CTD survey included four meridional sections from 119A degrees E to 122A degrees E around the Luzon Strait, during which pressure, temperature, and salinity were measured. The CTD data show that the isopycnal surface tilted from the SCS to the North Pacific; and it was steeper in the lower layers than in the upper ones. Meanwhile, we found strong vertical mixing taken place in the areas near 121A degrees E. The Kuroshio in high temperature and salinity intruded westward through Luzon Strait. The frequency of buoyancy was one order of magnitude greater than that of the common ones in the ocean, suggesting stronger stratification in the northeastern SCS. On the other hand, the long-term ADCP data show that before late October 2008, the direction of water flow in the SCS was eastward, and from November 2008 to late February 2009, it turned northwestward in the layers shallower than 150 m, while remained unchanged in deep layers from 200 to 450 m. From March to June 2009, the direction shifted with increasing depth from northward to southward, akin to the Ekman spiral. EOF analysis of the current time series revealed dominant empirical modes: the first mode corresponded to the mean current and showed that the Kuroshio intrusion occurred in the upper layers only from late December to early March. The temporal coefficient of the first and the second mode indicated clearly a dominant signal in a quasi-seasonal cycle.
Resumo:
Glass eels of the temperate anguillid species, Anguilla japonica, clearly showed a nocturnal activity rhythm under laboratory conditions. Light-dark cycle was a determinant factor affecting their photonegative behavior, nocturnal locomotor activity, and feeding behavior. Under natural light conditions, glass eels remained in shelters with little daytime feeding, but came out to forage during darkness. They moved and foraged actively in the following dark, and then their activity gradually declined possibly because of food satiation. They finally buried in the sand or stayed in tubes immediately after the lights came on. Under constant light, glass eels often came out of the shelters to forage in the lights but spent little time moving outside the shelters (e.g. swimming or crawling on the sand). Glass eels took shelter to avoid light and preferred tubes to sand for shelter possibly because tubes were much easier for them to take refuge in than sand. Feeding and locomotor activities of the glass eels were nocturnal and well synchronized. They appeared to depend on olfaction rather than vision to detect and capture prey in darkness. Feeding was the driving force for glass eels to come out of sand under constant light. However, in the dark, some glass eels swam or crept actively on sand even when they were fully fed. The lunar cycles of activity rhythms of glass eels that have been observed in some estuarine areas were not detected under these laboratory conditions.
Resumo:
Spawning behavior of artificially matured Japanese eels Anguillo japonica in captivity was investigated using a DVD Video image system. Following a routine hormone treatment technique for this fish, female eels were artificially matured by weekly intramuscular injections of salmon pituitary extracts (SPE) at a dosage of 40 mg kg(-1) BW for a total of 7-11 doses to induce ovarian maturation, while male eels received weekly intramuscular injections of human chorionic gonadotropin (HCG) at a dosage of 1000 IU kg(-1) BW for a total of 6-11 doses at 18 degrees C to induce testicular maturation in a separate aquarium. In this experiment, three pairs of such hormone-treated matured eels were acclimatized in seawater in 1.5 m(3) experimental aquaria with or without shelters at 20 degrees C for 24 h. Twenty four hours after the acclimatization terminated, the females received SPE injections to boost maturation and ovulation. Twenty four hours following these injections, the females received injections of HCG (1000 IU per fish, HCG injection) and 17 alpha-hydroxyprogesterone (2 mg per fish) to induce ovulation, while males were given HCG injections (1000 IU per fish, HCG injection) to induce spermiation. Video taping started after the 24 h acclimatization terminated and last for a total of 96 h. Before the HCG injections, both sexes were inactive, staying on the bottom or in shelters if available. Following these HCG injections, they became active and frequently left the bottom swimming in the water column. During the 24 h following HCG injections, activity accounted for 67% and 45% of the total activity in no shelter treatment for females and males, respectively, in comparison with 77% and 78% in shelter treatment. Activity was significantly more pronounced during this phase than during other phases for each sex in either shelter treatment. Egg release and sperm ejection occurred in the water column around the time eels' activity reached peaks. Eels either returned into the shelters or stayed motionlessly on the bottom of the aquaria after egg release and sperm ejection. Eight out of nine (89%) females in no shelter treatment spontaneously released eggs with a total of 11 batches 14-18 h following HCG injections, in contrast with four out of nine (44%) females releasing eggs for 4 batches 16-20 h in shelter treatment. Males arrived at activity peaks 11-13 h following HCG injections in no shelter treatment, 2-4 h ahead of the females (14-16 h), in comparison with 8-11 h in shelter treatment with 5-6 h ahead of the females (14-17 h). Courtship behavior indicative of spawning such as pairing, chasing and touching bodies was not observed in the eels in this study. However, on many occasions, eels of both sexes (male-female or female-female) were found to "cruise together" in water column for a short time period or frequently come together prior to releasing eggs and ejecting sperm, suggesting the possibility of group mating in artificially matured Japanese eels. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
当利用扫描隧道显微镜(SPM)作为一种纳米操作工具时,由于其缺乏实时的传感器信息反馈,而大大阻碍了它的广泛应用.利用超媒体人机交互接口可以解决这个问题.在纳米操作过程中,超媒体接口不但可以为操作者提供可实时更新的仿真操作场景,还可以通过力反馈手柄让操作者实时地感受到探针受到的三维纳米操作力.除此之外,操作者还可以通过该手柄直接控制探针的三维运动.最后在聚碳酸酯上进行了超媒体人机接口的纳米刻画实验.实验结果验证了该系统的有效性和效率.