846 resultados para PREDATOR-PREY
Resumo:
Many arthropod predators and parasitoids exhibit either stage-specific or lifetime omnivory, in that they include extra-floral nectar, floral nectar, honeydew or pollen in their immature and/or adult diet. Access to these plant-derived foods can enhance pest suppression by increasing both the individual fitness and local density of natural enemies. Commercial products such as Amino-Feed®, Envirofeast®, and Pred-Feed® can be applied to crops to act as artificial-plant-derived foods. In laboratory and glasshouse experiments we examined the influence of carbohydrate and protein rich Amino-Feed UV® or Amino-Feed, respectively, on the fitness of a predatory nabid bug Nabis kinbergii Reuter (Hemiptera: Nabidae) and bollworm pupal parasitoid Ichneumon promissorius (Erichson) (Hymenoptera: Ichneumonidae). Under the chosen conditions, the provision of either wet or dry residues of Amino-Feed UV had no discernable effect on immediate or longer-term survival and immature development times of N. kinbergii. In contrast, the provision of honey, Amino-Feed plus extrafloral nectar, and extrafloral nectar alone had a marked effect on the longevity of I. promissorius, indicating that they were limited by at least carbohydrates as an energy source, but probably not protein. Compared with a water only diet, the provision of Amino-Feed plus extrafloral nectar increased the longevity of males and females of I. promissorius by 3.0- and 2.4-fold, respectively. Not only did female parasitoids live longer when provided food, but the total number of eggs laid and timing of deposition was affected by diet under the chosen conditions. Notably, females in the water and honey treatments deposited greater numbers of eggs earlier in the trial, but this trend was unable to be sustained over their lifetime. Egg numbers in these treatments subsequently fell below the levels achieved by females in the Amino-Feed plus extrafloral nectar and cotton extrafloral nectar only treatments. Furthermore, there were times when the inclusion of the Amino-Feed was beneficial compared with cotton extrafloral nectar only. Artificial food supplements and plant-derived foods are worthy of further investigation because they have potential to improve the ecosystem service of biological pest control in targeted agroecosystems by providing natural enemies with an alternative source of nutrition, particularly during periods of prey/host scarcity.
Resumo:
Diel activity patterns of tropical fish assemblages in turbid, mangrove-dominated estuaries remain largely undocumented, leading to uncertainty about ecological processes in these systems. To capture active fishes by day and night, gill nets were set perpendicular to mangrove shorelines, in six northeastern Australian estuaries during 13 bimonthly trips. Fish were sampled with eight large mesh (102-151 mm) nets, set for 6 hrs (1500-2100), and checked hourly (1146 day, 635 dusk, 872 night checks). Four smaller mesh (19-51 mm) nets were also set for 1 hr before and after sunset (77 day, 78 night checks). Of 157 total species, 22 were netted exclusively before sunset and 47 exclusively after sunset. All of the top 26 species were present both day and night, but of these, 46% were primarily nocturnal (diel index > 0.65). An average of 77.2 fish hr−1 were netted by day vs 171.4 by night. Within the 400 km coastal region, assemblages differed between two northern wave-dominated (WD) estuaries and four southern tide-dominated ('I'D) estuaries. In all six estuaries Lates calcarifer (Bloch, 1790) dominated night assemblages. In 'I'D estuaries, night assemblages were also dominated by Thryssa hamiltoni Gray, 1835 and Eleutheronema tetradactylum (Shaw, 1804); while in WD estuaries Herklotsichthys castelnaui (Ogilby, 1897), Leiognathus equulus (Forsskål, 1775), and Megalops cyprinoids (Broussonet, 1782) were dominant at night. Nocturnal species included planktivores and carnivores, while daytime assemblages were dominated by detritivores (Mugillidae). Higher night catch rates are attributed to increased activity by mobile fishes moving from mangrove to adjacent habitats to forage, especially immediately post-sunset. Although day-night diets and forage resources have yet to be compared in mangrove systems, previously unrecognized trophic relationships involving variation in diel activity among important fishery species (Centropomidae, polynemidae, Carangidae) and their prey may be key ecological processes in these tropical mangrove estuaries. A proposed hypothesis explaining diel variation in mangrove fish assemblages of tropical estuaries is presented through a conceptual model.
Resumo:
Our evaluation of the predation of calves by wild dogs in the 1990s found that the number of calves killed and frequency of years that calf losses occurred, is higher in baited areas compared to adjoining, non-baited areas of similar size. Calf losses were highest with poor seasonal conditions, low prey numbers and where baited areas were re-colonised by wild dogs soon after baiting. We monitored wild dog “activity” before and after 35 baiting programs in southwest, central west and far north Queensland between 1994 and 2006 and found change in activity depends on the timing of the baiting. Baiting programs conducted between October and April show an increase in dog activity post-baiting (average increase of 219.1%, SEM 100.9, n=9, for programs conducted in October and November; an increase of 82.5%, SEM 54.5, n=7 for programs conducted in March and April; and a decrease in activity of 46.5%, SEM 10.2, n=19 for programs conducted between May and September). We monitored the seasonal activity and dispersal of wild dogs fitted with satellite transmitters 2006 to present. We have found that: • Activity of breeding males and females, whilst rearing and nurturing pups, is focussed around the den between July to September and away from areas of human activity. Activity of breeding groups appears to avoid locations of human activity until juveniles become independent (around late November). • While independent and solitary yearlings often have unstable, elliptically-shaped territories in less favourable areas, members of breeding groups have territories that appear seasonally stable and circular located in more favourable habitats. • Extra-territorial forays of solitary yearlings can be huge, in excess of 200 km. The largest forays we have monitored have occurred when the activity of pack members is focussed around rearing pups and juveniles (August to November). • Where wild dogs have dispersed or had significant territorial expansion, it has occurred within days of baiting programs and onto recently baited properties. • The wild dogs we have tracked have followed netting barrier fences for hundreds of kilometres and lived adjacent to or bypassed numerous grids in the barrier. Based on these studies, we conclude that a proportion of the perceived decline in dog activity between May and September, post baiting, is due to a decline in dog activity in areas associated with human activity. The increase in dog activity post-baiting between October and May (and increased calf predation on baited properties) is likely caused by wild dogs dispersing (juveniles and yearlings) or expanding (adults) their territory into baited, now ‘vacant’, areas. We hypothesise that baiting programs should be focussed in summer and autumn commencing late November as soon as juveniles become independent of adults. We also hypothesise that instead of large, annual or semi-annual baiting programs, laying the same number of baits over 4-6 weeks may be more effective. These hypotheses need to be tested through an adaptive management project.
Resumo:
The freshwater sawfish (Pristis microdon) is a critically endangered elasmobranch. Ontogenetic changes in the habitat use of juvenile P. microdon were studied using acoustic tracking in the Fitzroy River, Western Australia. Habitat partitioning was significant between 0+ (2007 year class) and larger 1+ (2006 year class) P. microdon. Smaller 0+ fish generally occupied shallower water (<0.6 m) compared with 1+ individuals, which mainly occurred in depths >0.6 m. Significant differences in hourly depth use were also revealed. The depth that 1+ P. microdon occupied was significantly influenced by lunar phase with these animals utilising a shallower and narrower depth range during the full moon compared with the new moon. This was not observed in 0+ individuals. Habitat partitioning was likely to be related to predator avoidance, foraging behaviours, and temperature and/or light regimes. The occurrence of 1+ P. microdon in deeper water may also result from a need for greater depths in which to manoeuvre. The present study demonstrates the utility of acoustic telemetry in monitoring P. microdon in a riverine environment. These results demonstrate the need to consider the habitat requirements of different P. microdon cohorts in the strategic planning of natural resources and will aid in the development of management strategies for this species.
Resumo:
Wild canids (wild dogs and European red foxes) cause substantial losses to Australian livestock industries and environmental values. Both species are actively managed as pests to livestock production. Contemporaneously, the dingo proportion of the wild dog population, being considered native, is protected in areas designated for wildlife conservation. Wild dogs particularly affect sheep and goat production because of the behavioural responses of domestic sheep and goats to attack, and the flexible hunting tactics of wild dogs. Predation of calves, although less common, is now more economically important because of recent changes in commodity prices. Although sometimes affecting lambing and kidding rates, foxes cause fewer problems to livestock producers but have substantial impacts on environmental values, affecting the survival of small to medium-sized native fauna and affecting plant biodiversity by spreading weeds. Canid management in Australia relies heavily on the use of compound 1080-poisoned baits that can be applied aerially or by ground. Exclusion fencing, trapping, shooting, livestock-guarding animals and predator calling with shooting are also used. The new Invasive Animals Cooperative Research Centre has 40 partners representing private and public land managers, universities, and training, research and development organisations. One of the major objectives of the new IACRC is to apply a strategic approach in order to reduce the impacts of wild canids on agricultural and environmental values in Australia by 10%. In this paper, the impacts, ecology and management of wild canids in Australia are briefly reviewed and the first cooperative projects that will address IACRC objectives for improving wild dog management are outlined.
Resumo:
Elasmobranchs are under increasing pressure from targeted fisheries worldwide, but unregulated bycatch is perhaps their greatest threat. This study tested five elasmobranch bycatch species (Sphyrna lewini, Carcharhinus tilstoni, Carcharhinus amblyrhynchos, Rhizoprionodon acutus, Glyphis glyphis) and one targeted teleost species (Lates calcarifer) to determine whether magnetic fields caused a reaction response and/or change in spatial use of an experimental arena. All elasmobranch species reacted to magnets at distances between 0.26 and 0.58 m at magnetic strengths between 25 and 234 gauss and avoided the area around the magnets. Contrastingly, the teleosts showed no reaction response and congregated around the magnets. The different reactions of the teleosts and elasmobranchs are presumably driven by the presence of ampullae of Lorenzini in the elasmobranchs; different reaction distances between elasmobranch species appeared to correlate with their feeding ecology. Elasmobranchs with a higher reliance on the electroreceptive sense to locate prey reacted to the magnets at the greatest distance, except G. glyphis. Notably, this is the only elasmobranch species tested with a fresh- and saltwater phase in their ecology, which may account for the decreased magnetic sensitivity. The application of magnets worldwide to mitigate the bycatch of elasmobranchs appears promising based on these results.
Resumo:
Three members of a group of liontailed macaques (Macaea silenus) were seen to use leaves for food preparation. Other examples of prey-selection and hunting behaviour in liontailed macaques reflect individual- and group-specific skills. The absence of similar patterns in bonnet macaques (Macaca radiata) living in the same habitat might be related to differences in the social design and indicate the high significance of social aspects for the occurrence and manifestation of innovative behaviour.
Resumo:
Accurate and confident identification of the insects, spiders and mites in vegetable crops is the first step towards successful management of pests and natural enemies. It is an essential prerequisite for crop monitoring, which is the backbone of an effective pest management program. This workshop manual and trainer's handbook were compiled as part of an insect, spider and mite identification program for Australian vegetable growers. The workshop training is designed to help growers to: • know how to collect and preserve insects for identification • be able to classify most common insects (particularly those of horticultural significance) into broad groups • appreciate the importance of these groups in pest, predator and parasite identification and management • collect and classify some insect pests, predators and parasites of horticultural importance.
Resumo:
To experimentally investigate the potential of mixed species polycultures for bioremediation of nutrient rich prawn farm effluent, a series of experiments was performed with banana prawns Penaeus (Fenneropenaeus) merguiensis, sea mullet Mugil cephalus and rabbitfish Siganus nebulosus to determine their compatibilities during particular life stages. Rabbitfish demonstrated a high tendency to prey upon banana prawn juveniles when no other food was available. Mullet of various sizes did not appear to prey upon banana prawn postlarvae (PL16) or juveniles in a fed or unfed environment. The study confirms the good potential for mullet and banana prawn polycultures.
Resumo:
There is growing interest in the role that apex predators play in shaping terrestrial ecosystems and maintaining trophic cascades. In line with the mesopredator release hypothesis, Australian dingoes (Canis lupus dingo and hybrids) are assumed by many to regulate the abundance of invasive mesopredators, such as red foxes Vulpes vulpes and feral cats Felis catus, thereby providing indirect benefits to various threatened vertebrates. Several recent papers have claimed to provide evidence for the biodiversity benefits of dingoes in this way. Nevertheless, in this paper we highlight several critical weaknesses in the methodological approaches used in many of these reports, including lack of consideration for seasonal and habitat differences in activity, the complication of simple track-based indices by incorporating difficult-to-meet assumptions, and a reduction in sensitivity for assessing populations by using binary measures rather than potentially continuous measures. Of the 20 studies reviewed, 15 of them (75%) contained serious methodological flaws, which may partly explain the inconclusive nature of the literature nvestigating interactions between invasive Australian predators. We therefore assert that most of the “growing body of evidence” for mesopredator release is merely an inconclusive growing body of literature only. We encourage those interested in studying the ecological roles of dingoes relative to invasive mesopredators and native prey species to account for the factors we identify, and caution the value of studies that have not done so.
Resumo:
The lateral line system allows elasmobranchs to detect hydrodynamic movements in their close surroundings. We examined the distribution of pit organs and lateral line canals in 4 species of sawfish (Anoxypristis cuspidata, Pristis microdon, P. clavata and P. zijsron). Pit organs could only be located in A. cuspidata, which possesses elongated pits that are lined by dermal denticles. In all 4 pristid species, the lateral line canals are well developed and were separated into regions of pored and non-pored canals. In all species the tubules that extend from pored canals form extensive networks. In A. cuspidata, P. microdon and P. clavata, the lateral line canals on both the dorsal and ventral surfaces of the rostrum possess extensively branched and pored tubules. Based on this morphological observation, we hypothesized that these 3 species do not use their rostrum to search in the substrate for prey as previously assumed. Other batoids that possess lateral line canals adapted to perceive stimuli produced by infaunal prey possess non-pored lateral line canals, which also prevent the intrusion of substrate particles. However, this hypothesis remains to be tested behaviourally in pristids. Lateral line canals located between the mouth and the nostrils are non-pored in all 4 species of sawfish. Thus this region is hypothesized to perceive stimuli caused by direct contact with prey before ingestion. Lateral line canals that contain neuromasts are longest in P. microdon, but canals containing neuromasts along the rostrum are longest in A. cuspidata.
Resumo:
The studies of Allen (2011) and Allen et al. (2011) recently examined the methodology underpinning claims that dingoes provide net benefits to biodiversity by suppressing foxes and cats. They found most studies to have design flaws and/or observational methods that preclude valid interpretations from the data, describing most of the current literature as ‘wild dogma’. In this short supplement, we briefly highlight the roles and implications of wild dogma for wild dog management in Australia. We discuss nomenclature, and the influence that unreliable science can have on policy and practice changes related to apex predator management.
Resumo:
The distribution and density of the ampullary electroreceptors in the skin of elasmobranchs are influenced by the phylogeny and ecology of a species. Sensory maps were created for 4 species of pristid sawfish. Their ampullary pores were separated into pore fields based on their innervation and cluster formation. Ventrally, ampullary pores are located in 6 areas (5 in Pristis microdon), covering the rostrum and head to the gills. Dorsally, pores are located in 4 areas (3 in P. microdon), which cover the rostrum, head and may extend slightly onto the pectoral fins. In all species, the highest number of pores is found on the dorsal and ventral sides of the rostrum. The high densities of pores along the rostrum combined with the low densities around the mouth could indicate that sawfish use their rostrum to stun their prey before ingesting it, but this hypothesis remains to be tested. The directions of ampullary canals on the ventral side of the rostrum are species specific. P. microdon possesses the highest number of ampullary pores, which indicates that amongst the study species this species is an electroreception specialist. As such, juvenile P. microdon inhabit low-visibility freshwater habitats.
Resumo:
Dingoes and other wild dogs (Canis lupus dingo and hybrids) are generalist predators that consume a wide variety of different prey species within their range. Little is known, however, of the diets of dingoes in north-eastern Australia where the potential for impacts by dingoes exists. Recently new information has been provided on the diets of dingoes from several sites in Queensland, Australia, significantly adding to the body of published knowledge on ecosystems within this region. Further information on the diet of dingoes in north-eastern Australia is added from 1460 scats collected from five sites, representing tropical savannahs, tropical offshore islands (and a matched mainland area), dry sclerophyll forests and peri-urban areas on the fringe of Townsville. Macropods, possums and bandicoots were found to be common prey for dingoes in these areas. Evidence suggested that the frequency of prey remains in scats can be an unreliable indicator of predation risk to potential prey and it was found that novel and unexpected prey species appear in dingo diets as preferred prey become unavailable. The results support the generalisation that dingoes prefer medium- to large-sized native prey species when available but also highlight the capacity for dingoes to exploit populations of both large and small prey species that might not initially be considered at risk from predation based solely on data on scats.
Resumo:
Since 1992, wild dolphin provisioning has occurred on a nightly basis at Tangalooma, a resort located on Moreton Island, Australia. Each evening at dusk up to 12 bottlenose dolphins (Tursiops sp.) are provided with fish in a regulated provisioning program. Since July 1998, biologists managing the program have documented 23 occurrences of "gift giving," when several of the provisioned dolphins have offered wild-caught cephalopod or fin fish species to staff members. The characteristics of each of these events are presented, and we explore the relationships between these events and their temporal patterns, and the age and sex of the dolphins involved. We also consider the behavioral explanations for the "gift giving," including prey sharing, play, and teaching behaviors, which have previously been described for cetaceans and other higher mammals. Gift giving may occur either as a discreet behavior (that may be a sequel to one or more other behaviors such as play or food preparation), or as a part of other behaviors, such as play and/or food sharing. It is most likely a manifestation of the particular relationship between the provisioned dolphins and the human participants in the provisioning. Gift giving has become an established but infrequent part of the culture of the provisioned dolphins at Tangalooma. © ISAZ 2012 Printed in the UK.