958 resultados para PRECIPITATION POLYMERIZATION
Resumo:
The ability of the HiGEM climate model to represent high-impact, regional, precipitation events is investigated in two ways. The first focusses on a case study of extreme regional accumulation of precipitation during the passage of a summer extra-tropical cyclone across southern England on 20 July 2007 that resulted in a national flooding emergency. The climate model is compared with a global Numerical Weather Prediction (NWP) model and higher resolution, nested limited area models. While the climate model does not simulate the timing and location of the cyclone and associated precipitation as accurately as the NWP simulations, the total accumulated precipitation in all models is similar to the rain gauge estimate across England and Wales. The regional accumulation over the event is insensitive to horizontal resolution for grid spacings ranging from 90km to 4km. Secondly, the free-running climate model reproduces the statistical distribution of daily precipitation accumulations observed in the England-Wales precipitation record. The model distribution diverges increasingly from the record for longer accumulation periods with a consistent under-representation of more intense multi-day accumulations. This may indicate a lack of low-frequency variability associated with weather regime persistence. Despite this, the overall seasonal and annual precipitation totals from the model are still comparable to those from ERA-Interim.
Resumo:
The Northern Hemisphere monsoons are an integral component of Earth's hydrological cycle and affect the lives of billions of people. Observed precipitation in the monsoon regions underwent substantial changes during the second half of the 20th century, with drying from the 1950s to mid-1980s and increasing precipitation in recent decades. Modeling studies suggest anthropogenic aerosols has been a key factor driving changes in tropical and monsoon precipitation. Here we apply detection and attribution methods to determine whether observed changes are driven by human influences using fingerprints of individual forcings (i.e. greenhouse gas, anthropogenic aerosol and natural) derived from climate models. The results show that the observed changes can only be explained when including the influence of anthropogenic aerosols, even after accounting for internal climate variability. Anthropogenic aerosol, not greenhouse gas or natural forcing, has been the dominant influence on Northern Hemisphere monsoon precipitation over the second half of the 20th century.
Resumo:
A new generation of reanalysis products is currently being produced that provides global gridded atmospheric data spanning more than a century. Such data may be useful for characterising the observed long-term variability of extreme precipitation events, particularly in regions where spatial coverage of surface observations is limited, and in the pre-satellite era. An analysis of extreme precipitation events is performed over England and Wales, investigating the ability of Twentieth Century Reanalysis and ERA-Interim to represent extreme precipitation accumulations as recorded in the England and Wales Precipitation dataset on accumulation time-scales from 1 to 7 days. Significant correlations are found between daily precipitation accumulation observations and both reanalysis products. A hit-rate analysis indicates that the reanalyses have hit rates (as defined by an event above the 98th percentile) of approximately 40–65% for extreme events in both summer (JJA) and winter (DJF). This suggests that both ERA-Interim and Twentieth Century Reanalysis are difficult to use for representing individual extreme precipitation events over England and Wales.
Resumo:
Blends of PEEK with macrocyclic thioether-ketones show initial melt-viscosities reduced by more than an order of magnitude relative to the polymer itself, enabling more facile processing and fabrication. On raising the temperature of the melt, however, the macrocycle undergoes spontaneous, entropically-driven ring-opening polymerization (ED-ROP), so that the properties of the final polymer should not, in principle, be compromised by the presence of low-MW macrocyclic material.
Resumo:
The Mediterranean region has been identified as a climate change "hot-spot" due to a projected reduction in precipitation and fresh water availability which has potentially large socio-economic impacts. To increase confidence in these projections, it is important to physically understand how this precipitation reduction occurs. This study quantifies the impact on winter Mediterranean precipitation due to changes in extratropical cyclones in 17 CMIP5 climate models. In each model, the extratropical cyclones are objectively tracked and a simple approach is applied to identify the precipitation associated to each cyclone. This allows us to decompose the Mediterranean precipitation reduction into a contribution due to changes in the number of cyclones and a contribution due to changes in the amount of precipitation generated by each cyclone. The results show that the projected Mediterranean precipitation reduction in winter is strongly related to a decrease in the number of Mediterranean cyclones. However, the contribution from changes in the amount of precipitation generated by each cyclone are also locally important: in the East Mediterranean they amplify the precipitation trend due to the reduction in the number of cyclones, while in the North Mediterranean they compensate for it. Some of the processes that determine the opposing cyclone precipitation intensity responses in the North and East Mediterranean regions are investigated by exploring the CMIP5 inter-model spread.
Resumo:
A continuous band of high ion temperature, which persisted for about 8 h and zigzagged north-south across more than five degrees in latitude in the dayside (07:00– 15:00MLT) auroral ionosphere, was observed by the EISCAT VHF radar on 23 November 1999. Latitudinal gradients in the temperature of the F-region electron and ion gases (Te and Ti , respectively) have been compared with concurrent observations of particle precipitation and field-perpendicular convection by DMSP satellites, in order to reveal a physical explanation for the persistent band of high Ti , and to test the potential role of Ti and Te gradients as possible markers for the open-closed field line boundary. The north/south movement of the equatorward Ti boundary was found to be consistent with the contraction/expansion of the polar cap due to an unbalanced dayside and nightside reconnection. Sporadic intensifications in Ti , recurring on _10-min time scales, indicate that frictional heating was modulated by time-varying reconnection, and the band of high Ti was located on open flux. However, the equatorward Ti boundary was not found to be a close proxy of the open-closed boundary. The closest definable proxy of the open-closed boundary is the magnetosheath electron edge observed by DMSP. Although Te appears to be sensitive to magnetosheath electron fluxes, it is not found to be a suitable parameter for routine tracking of the open-closed boundary, as it involves case dependent analysis of the thermal balance. Finally, we have documented a region of newly-opened sunward convecting flux. This region is situated between the convection reversal boundary and the magnetosheath electron edge defining the openclosed boundary. This is consistent with a delay of several minutes between the arrival of the first (super-Alfv´enic) magnetosheath electrons and the response in the ionospheric convection, conveyed to the ionosphere by the interior Alfv´en wave. It represents a candidate footprint of the low-latitude boundary mixing layer on sunward convecting open flux
Resumo:
Two central issues in magnetospheric research are understanding the mapping of the low-altitude ionosphere to the distant regions of the magnetsphere, and understanding the relationship between the small-scale features detected in the various regions of the ionosphere and the global properties of the magnetosphere. The high-latitude ionosphere, through its magnetic connection to the outer magnetosphere, provides an important view of magnetospheric boundaries and the physical processes occurring there. All physical manifestations of this magnetic connectivity (waves, particle precipitation, etc.), however, have non-zero propagation times during which they are convected by the large-scale magnetospheric electric field, with phenomena undergoing different convection distances depending on their propagation times. Identification of the ionospheric signatures of magnetospheric regions and phenomena, therefore, can be difficult. Considerable progress has recently been made in identifying these convection signatures in data from low- and high-altitude satellites. This work has allowed us to learn much about issues such as: the rates of magnetic reconnection, both at the dayside magnetopause and in the magnetotail; particle transport across the open magnetopause; and particle acceleration at the magnetopause and the magnetotail current sheets.
Resumo:
Catastrophe risk models used by the insurance industry are likely subject to significant uncertainty, but due to their proprietary nature and strict licensing conditions they are not available for experimentation. In addition, even if such experiments were conducted, these would not be repeatable by other researchers because commercial confidentiality issues prevent the details of proprietary catastrophe model structures from being described in public domain documents. However, such experimentation is urgently required to improve decision making in both insurance and reinsurance markets. In this paper we therefore construct our own catastrophe risk model for flooding in Dublin, Ireland, in order to assess the impact of typical precipitation data uncertainty on loss predictions. As we consider only a city region rather than a whole territory and have access to detailed data and computing resources typically unavailable to industry modellers, our model is significantly more detailed than most commercial products. The model consists of four components, a stochastic rainfall module, a hydrological and hydraulic flood hazard module, a vulnerability module, and a financial loss module. Using these we undertake a series of simulations to test the impact of driving the stochastic event generator with four different rainfall data sets: ground gauge data, gauge-corrected rainfall radar, meteorological reanalysis data (European Centre for Medium-Range Weather Forecasts Reanalysis-Interim; ERA-Interim) and a satellite rainfall product (The Climate Prediction Center morphing method; CMORPH). Catastrophe models are unusual because they use the upper three components of the modelling chain to generate a large synthetic database of unobserved and severe loss-driving events for which estimated losses are calculated. We find the loss estimates to be more sensitive to uncertainties propagated from the driving precipitation data sets than to other uncertainties in the hazard and vulnerability modules, suggesting that the range of uncertainty within catastrophe model structures may be greater than commonly believed.
Resumo:
We present evidence for the acceleration of magnetospheric ions by reflection off two Alfvén waves, launched by the reconnection site into the inflow regions on both sides of the reconnecting magnetopause. The “exterior” wave stands in the inflow from the magnetosheath and is the magnetopause, in the sense that the majority of the field rotation occurs there. The other, “interior” wave stands in the inflow region on the magnetospheric side of the boundary. The population reflected by the interior wave is the more highly energized of the two and appears at low altitudes on open field lines, immediately equatorward of the cusp precipitation. In addition, we identify the population of magnetosheath ions transmitted across the exterior Alfvén wave, as well as a population of magnetospheric ions which are accelerated, after transmission through the interior wave, by reflection off the exterior wave. The ion populations near the X line are modeled and, with allowance for time-of-flight effects, are also derived from observations in the dayside auroral ionosphere. Agreement between observed and theoretical spectra is very good and the theory also explains the observed total fluxes and average energies of the precipitations poleward of the open/closed field line boundary. The results offer a physical interpretation of all the various classifications of precipitation into the dayside ionosphere (central plasma sheet, dayside boundary plasma sheet, void, low-latitude boundary layer, cusp, and mantle) and allow the conditions in both the magnetosphere and the magnetosheath adjacent to the X line to be studied.
Resumo:
We discuss the characteristics of magnetosheath plasma precipitation in the “cusp” ionosphere for when the reconnection at the dayside magnetopause takes place only in a series of pulses. It is shown that even in this special case, the low-altitude cusp precipitation is continuous, unless the intervals between the pulses are longer than observed intervals between magnetopause flux transfer event (FTE) signatures. We use FTE observation statistics to predict, for this case of entirely pulsed reconnection, the occurrence frequency, the distribution of latitudinal widths, and the number of ion dispersion steps of the cusp precipitation for a variety of locations of the reconnection site and a range of values of the local de-Hoffman Teller velocity. It is found that the cusp occurrence frequency is comparable with observed values for virtually all possible locations of the reconnection site. The distribution of cusp width is also comparable with observations and is shown to be largely dependent on the distribution of the mean reconnection rate, but pulsing the reconnection does very slightly increase the width of that distribution compared with the steady state case. We conclude that neither cusp occurrence probability nor width can be used to evaluate the relative occurrence of reconnection behaviors that are entirely pulsed, pulsed but continuous and quasi-steady. We show that the best test of the relative frequency of these three types of reconnection is to survey the distribution of steps in the cusp ion dispersion characteristics.
Resumo:
A method is presented which allows estimation of the variation of the rate of magnetic reconnection at the day side magnetopause. This is achieved using observations of the cusp particle precipitation made by low-altitude polar-orbiting spacecraft. In this paper we apply the technique to a previously published example of a cusp intersection by the DMSP F7 satellite. It is shown that the cusp signature in this case was produced by three separate bursts of reconnection which were of the order of 10 min apart, each lasting roughly 1 min. This is similar to the variation of reconnection rate which is required to explain typical flux transfer event signatures at the magnetopause.
Resumo:
The asymmetries in the convective flows, current systems, and particle precipitation in the high-latitude dayside ionosphere which are related to the equatorial plane components of the interplanetary magnetic field (IMF) are discussed in relation to the results of several recent observational studies. It is argued that all of the effects reported to date which are ascribed to the y component of the IMF can be understood, at least qualitatively, in terms of a simple theoretical picture in which the effects result from the stresses exerted on the magnetosphere consequent on the interconnection of terrestrial and interplanetary fields. In particular, relaxation under the action of these stresses allows, in effect, a partial penetration of the IMF into the magnetospheric cavity, such that the sense of the expected asymmetry effects on closed field lines can be understood, to zeroth order, in terms of the “dipole plus uniform field” model. In particular, in response to IMF By, the dayside cusp should be displaced in longitude about noon in the same sense as By in the northern hemisphere, and in the opposite sense to By in the southern hemisphere, while simultaneously the auroral oval as a whole should be shifted in the dawn-dusk direction in the opposite sense with respect to By. These expected displacements are found to be consistent with recently published observations. Similar considerations lead to the suggestion that the auroral oval may also undergo displacements in the noon-midnight direction which are associated with the x component of the IMF. We show that a previously published study of the position of the auroral oval contains strong initial evidence for the existence of this effect. However, recent results on variations in the latitude of the cusp are more ambiguous. This topic therefore requires further study before definitive conclusions can be drawn.
Resumo:
The Finnish Meteorological Institute, in collaboration with the University of Helsinki, has established a new ground-based remote-sensing network in Finland. The network consists of five topographically, ecologically and climatically different sites distributed from southern to northern Finland. The main goal of the network is to monitor air pollution and boundary layer properties in near real time, with a Doppler lidar and ceilometer at each site. In addition to these operational tasks, two sites are members of the Aerosols, Clouds and Trace gases Research InfraStructure Network (ACTRIS); a Ka band cloud radar at Sodankylä will provide cloud retrievals within CloudNet, and a multi-wavelength Raman lidar, PollyXT (POrtabLe Lidar sYstem eXTended), in Kuopio provides optical and microphysical aerosol properties through EARLINET (the European Aerosol Research Lidar Network). Three C-band weather radars are located in the Helsinki metropolitan area and are deployed for operational and research applications. We performed two inter-comparison campaigns to investigate the Doppler lidar performance, compare the backscatter signal and wind profiles, and to optimize the lidar sensitivity through adjusting the telescope focus length and data-integration time to ensure sufficient signal-to-noise ratio (SNR) in low-aerosol-content environments. In terms of statistical characterization, the wind-profile comparison showed good agreement between different lidars. Initially, there was a discrepancy in the SNR and attenuated backscatter coefficient profiles which arose from an incorrectly reported telescope focus setting from one instrument, together with the need to calibrate. After diagnosing the true telescope focus length, calculating a new attenuated backscatter coefficient profile with the new telescope function and taking into account calibration, the resulting attenuated backscatter profiles all showed good agreement with each other. It was thought that harsh Finnish winters could pose problems, but, due to the built-in heating systems, low ambient temperatures had no, or only a minor, impact on the lidar operation – including scanning-head motion. However, accumulation of snow and ice on the lens has been observed, which can lead to the formation of a water/ice layer thus attenuating the signal inconsistently. Thus, care must be taken to ensure continuous snow removal.
Resumo:
We analyse the spatial expression of seasonal climates of the Mediterranean and northern Africa in pre-industrial (piControl) and mid-Holocene (midHolocene, 6 yr BP) simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Modern observations show four distinct precipitation regimes characterized by differences in the seasonal distribution and total amount of precipitation: an equatorial band characterized by a double peak in rainfall, the monsoon zone characterized by summer rainfall, the desert characterized by low seasonality and total precipitation, and the Mediterranean zone characterized by summer drought. Most models correctly simulate the position of the Mediterranean and the equatorial climates in the piControl simulations, but overestimate the extent of monsoon influence and underestimate the extent of desert. However, most models fail to reproduce the amount of precipitation in each zone. Model biases in the simulated magnitude of precipitation are unrelated to whether the models reproduce the correct spatial patterns of each regime. In the midHolocene, the models simulate a reduction in winter rainfall in the equatorial zone, and a northward expansion of the monsoon with a significant increase in summer and autumn rainfall. Precipitation is slightly increased in the desert, mainly in summer and autumn, with northward expansion of the monsoon. Changes in the Mediterranean are small, although there is an increase in spring precipitation consistent with palaeo-observations of increased growing-season rainfall. Comparison with reconstructions shows most models underestimate the mid-Holocene changes in annual precipitation, except in the equatorial zone. Biases in the piControl have only a limited influence on midHolocene anomalies in ocean–atmosphere models; carbon-cycle models show no relationship between piControl bias and midHolocene anomalies. Biases in the prediction of the midHolocene monsoon expansion are unrelated to how well the models simulate changes in Mediterranean climate.