841 resultados para POTENTIAL USE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traditionally, ice-binding proteins (IBPs), also known as antifreeze proteins (AFPs), have been defined by two universal activities: ice recrystallization inhibition and thermal hysteresis. However, there remains the possibility IBPs have other complementary functions given the diversity found within this protein group. This thesis explores some of these in both natural and applied settings, in the hopes of furthering our understanding of this remarkable group of proteins. Plant IBPs could function as part of a defensive strategy against ice nucleators produced by certain pathogens. To assess this hypothesis, recombinant IBPs from perennial ryegrass and purple false brome were combined with the ice nucleation protein (INP) from the plant pathogen, Pseudomonas syringae. Strikingly, the plant proteins depressed the freezing point of the bacterial INP, while a fish AFP could not, nor did the INPs have any effect on IBP activity. Thus, the interaction between these two different proteins suggests a role in plant defensive strategies against pathogenic bacteria as another IBP function. In addition, the potential use of hyperactive insect IBPs in organ preservation was investigated. Current kidney preservation techniques involve storing the organ at 4 °C for a maximum of 24 h prior to transplantation. Extending this “safe” time would have profound effects on renal transplants, however, ischemic injury is prevalent when storage periods are prolonged. Experiments described here allowed subzero preservation for 72 h with the addition of a beetle IBP to CryoStasis® solution. Kidneys stored using the traditional technique for 24 h and the method developed here for 72 h showed similar levels of biomarker enzymes, underscoring the potential utility of insect IBPs for future transplant purposes. Finally, IBP function in the freeze-tolerant gall fly, Eurosta solidaginis, was examined. Larvae representing the mid-autumn stage displayed ice-binding activity, suggesting an IBP is being expressed, possibly as a protective measure against freezing damage when fall temperatures can unpredictably drop. IBP activity was also observed in the larvae’s host plant, Solidago spp. Mass spectrometry analysis of ice-affinity purified plant extracts provided three candidate pathogenesis-related proteins that could be responsible for the detected activity, further demonstrating additional functions of IBPs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Decellularized adipose tissue (DAT) is a promising biomaterial for soft tissue regeneration, and it provides a highly conducive microenvironment for human adipose-derived stem/stromal cell (ASC) attachment, proliferation, and adipogenesis. This thesis focused on developing techniques to fabricate 3-D bioscaffolds from enzymatically-digested DAT as platforms for ASC culture and delivery in adipose tissue engineering and large-scale ASC expansion. Initial work investigated chemically crosslinked microcarriers fabricated from pepsin-digested DAT as injectable adipo-inductive substrates for ASCs. DAT microcarriers highly supported ASC adipogenesis compared to gelatin microcarriers in a CELLSPIN system, as confirmed by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, lipid accumulation, and endpoint RT-PCR. ASCs cultured on DAT microcarriers in proliferation medium also had elevated PPARγ, C/EBPα, and LPL expression which suggested adipo-inductive properties. In vivo testing of the DAT microcarriers exhibited stable volume retention and enhanced cellular infiltration, tissue remodeling, and angiogenesis. Building from this work, non-chemically crosslinked porous foams and bead foams were fabricated from α-amylase-digested DAT for soft tissue regeneration. Foams were stable and strongly supported ASC adipogenesis based on GPDH activity and endpoint RT-PCR. PPARγ, C/EBPα, and LPL expression in ASCs cultured on the foams in proliferation media indicated adipo-inductive properties. Foams with Young’s moduli similar to human fat also influenced ASC adipogenesis by enhanced GPDH activity. In vivo adipogenesis accompanied by a potent angiogenic response and rapid resorption showed their potential use in wound healing applications. Finally, non-chemically crosslinked porous microcarriers synthesized from α-amylase-digested DAT were investigated for ASC expansion. DAT microcarriers remained stable in culture and supported significantly higher ASC proliferation compared to Cultispher-S microcarriers in a CELLSPIN system. ASC immunophenotype was preserved for all expanded groups, with reduced adhesion marker expression under dynamic conditions. DAT microcarrier expansion upregulated ASC expression of early adipogenic (PPARγ, LPL) and chondrogenic (COMP) markers without inducing a mature phenotype. DAT microcarrier expanded ASCs also showed similar levels of adipogenesis and osteogenesis compared to Cultispher-S despite a significantly higher population fold-change, and had the highest level of chondrogenesis among all groups. This study demonstrates the promising use of DAT microcarriers as a clinically relevant strategy for ASC expansion while maintaining multilineage differentiation capacity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cigar Lake is a high-grade uranium deposit, located in northern Saskatchewan, Canada. In order to extract the uranium ore remotely, thus ensuring minimal radiation dose to workers and also to access the ore from stable ground, the Jet Boring System (JBS) was developed by Cameco Corporation. This system uses a high-powered water jet to remotely excavate cavities. Survey data is required to determine the final shape, volume, and location of the cavity for mine planning purposes and construction. This paper provides an overview of the challenges involved in remotely surveying a JBS-mined cavity and studies the potential use of a time-of-flight (ToF) camera for remote cavity surveying. It reports on data collected and analyzed from inside an experimental environment as well as on real data acquired on site from the Cigar Lake and Rabbit Lake mines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the past decade, several major food safety crises originated from problems with feed. Consequently, there is an urgent need for early detection of fraudulent adulteration and contamination in the feed chain. Strategies are presented for two specific cases, viz. adulterations of (i) soybean meal with melamine and other types of adulterants/contaminants and (ii) vegetable oils with mineral oil, transformer oil or other oils. These strategies comprise screening at the feed mill or port of entry with non-destructive spectroscopic methods (NIRS and Raman), followed by post-screening and confirmation in the laboratory with MS-based methods. The spectroscopic techniques are suitable for on-site and on-line applications. Currently they are suited to detect fraudulent adulteration at relatively high levels but not to detect low level contamination. The potential use of the strategies for non-targeted analysis is demonstrated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fibrosis is a progressive and potentially fatal process that can occur in numerous organ systems. Characterised by the excessive deposition of extracellular matrix proteins such as collagens and fibronectin, fibrosis affects normal tissue architecture and impedes organ function. Although a considerable amount of research has focused on the mechanisms underlying disease pathogenesis, current therapeutic options do not directly target the pro-fibrotic process. As a result, there is a clear unmet clinical need to develop new agents. Novel findings implicate a role for epigenetic modifications contributing to the progression of fibrosis by alteration of gene expression profiles. This review will focus on DNA methylation; its association with fibroblast differentiation and activation and the consequent buildup of fibrotic scar tissue. The potential use of therapies that modulate this epigenetic pathway for the treatment of fibrosis in several organ systems is also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The development of heart failure is associated with changes in the size, shape, and structure of the heart that has a negative impact on cardiac function. These pathological changes involve excessive extracellular matrix deposition within the myocardial interstitium and myocyte hypertrophy. Alterations in fibroblast phenotype and myocyte activity are associated with reprogramming of gene transcriptional profiles that likely requires epigenetic alterations in chromatin structure. The aim of our work was to investigate the potential of a currently licensed anticancer epigenetic modifier as a treatment option for cardiac diseases associated with hypertension-induced cardiac hypertrophy and fibrosis.

METHODS AND RESULTS: The effects of DNA methylation inhibition with 5-azacytidine (5-aza) were examined in a human primary fibroblast cell line and in a spontaneously hypertensive rat (SHR) model. The results from this work allude to novel in vivo antifibrotic and antihypertrophic actions of 5-aza. Administration of the DNA methylation inhibitor significantly improved several echocardiographic parameters associated with hypertrophy and diastolic dysfunction. Myocardial collagen levels and myocyte size were reduced in 5-aza-treated SHRs. These findings are supported by beneficial in vitro effects in cardiac fibroblasts. Collagen I, collagen III, and α-smooth muscle actin were reduced in a human ventricular cardiac fibroblast cell line treated with 5-aza.

CONCLUSION: These findings suggest a role for epigenetic modifications in contributing to the profibrotic and hypertrophic changes evident during disease progression. Therapeutic intervention with 5-aza demonstrated favorable effects highlighting the potential use of this epigenetic modifier as a treatment option for cardiac pathologies associated with hypertrophy and fibrosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nonlinear optics is a broad field of research and technology that encompasses subject matter in the field of Physics, Chemistry, and Engineering. It is the branch of Optics that describes the behavior of light in nonlinear media, that is, media in which the dielectric polarization P responds nonlinearly to the electric field E of the light. This nonlinearity is typically only observed at very high light intensities. This area has applications in all optical and electro optical devices used for communication, optical storage and optical computing. Many nonlinear optical effects have proved to be versatile probes for understanding basic and applied problems. Nonlinear optical devices use nonlinear dependence of refractive index or absorption coefficient on the applied field. These nonlinear optical devices are passive devices and are referred to as intelligent or smart materials owing to the fact that the sensing, processing and activating functions required for optical processes are inherent to them which are otherwise separate in dynamic devices.The large interest in nonlinear optical crystalline materials has been motivated by their potential use in the fabrication of all-optical photonic devices. Transparent crystalline materials can exhibit different kinds of optical nonlinearities which are associated with a nonlinear polarization. The choice of the most suitable crystal material for a given application is often far from trivial; it should involve the consideration of many aspects. A high nonlinearity for frequency conversion of ultra-short pulses does not help if the interaction length is strongly limited by a large group velocity mismatch and the low damage threshold limits the applicable optical intensities. Also, it can be highly desirable to use a crystal material which can be critically phasematched at room temperature. Among the different types of nonlinear crystals, metal halides and tartrates have attracted due to their importance in photonics. Metal halides like lead halides have drawn attention because they exhibit interesting features from the stand point of the electron-lattice interaction .These materials are important for their luminescent properties. Tartrate single crystals show many interesting physical properties such as ferroelectric, piezoelectric, dielectric and optical characteristics. They are used for nonlinear optical devices based on their optical transmission characteristics. Among the several tartrate compounds, Strontium tartrate, Calcium tartrate and Cadmium tartrate have received greater attention on account of their ferroelectric, nonlinear optical and spectral characteristics. The present thesis reports the linear and nonlinear aspects of these crystals and their potential applications in the field of photonics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bioelectrochemical systems could have potential for bioremediation of contaminants either in situ or ex situ. The treatment of a mixture of phenanthrene and benzene using two different tubular microbial fuel cells (MFCs) designed for either in situ and ex situ applications in aqueous systems was investigated over long operational periods (up to 155 days). For in situ deployments, simultaneous removal of the petroleum hydrocarbons (>90% in term of degradation efficiency) and bromate, used as catholyte, (up to 79%) with concomitant biogenic electricity generation (peak power density up to 6.75 mWm−2) were obtained at a hydraulic retention time (HRT) of 10 days. The tubular MFC could be operated successfully at copiotrophic (100 ppm phenanthrene, 2000 ppm benzene at HRT 30 days) and oligotrophic (phenanthrene and benzene, 50 ppb each, HRT 10 days) substrate conditions suggesting its effectiveness and robustness at extreme substrate concentrations in anoxic environments. In the MFC designed for ex situ deployments, optimum MFC performance was obtained at HRT of 30 h giving COD removal and maximum power output of approximately 77% and 6.75 mWm−2 respectively. The MFC exhibited the ability to resist organic shock loadings and could maintain stable MFC performance. Results of this study suggest the potential use of MFC technology for possible in situ/ex situ hydrocarbon-contaminated groundwater treatment or refinery effluents clean-up, even at extreme contaminant level conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ce travail porte sur l’identification, la fonction et la régulation des molécules maternelles d’ARNm qui dirigent la compétence développementale juste après la fécondation chez les bovins. Tout d’abord, en utilisant le modèle du temps écoulé jusqu’au premier clivage zygotique et à travers l’évaluation du transcriptome des embryons à 2-cellules, il fut possible de déterminer la signature moléculaire des niveaux extrêmes de compétence au développement et sélectionner des molécules candidates pour des études postérieures. Les résultats ont montré que les embryons de capacité développementale variable diffèrent dans certaines fonctions comme la réparation de l’ADN, le traitement de l’ARN, la synthèse de protéines et l’expression génique définies par des ARNm synthétisés par l’ovocyte. Pour obtenir une confirmation fonctionnelle, une paire de transcrits maternels (l’un détecté dans notre sondage précédent et l’autre étant une molécule reliée) ont été inhibés par « knock-down » dans des ovocytes. Les effets du knock-down de ces facteurs de transcription sont apparus avant la formation des blastocystes dû à une diminution de la capacité au clivage et celle à progresser après le stage de 8-cellules. L’analyse moléculaire des embryons knock-down survivants suggère qu’un de ces facteurs de transcription est un contrôleur crucial de l’activation du génome embryonnaire, qui représente une fenêtre développementale dans l’embryogenèse précoce. Dans la dernièr étude, nous avons testé si les facteurs de transcription d’intérêt sont modulés au niveau traductionnel. Des ARNm rapporteurs couplés à la GFP (Protéine fluorescente) contenant soit la version courte ou la version longue de la séquence 3’-UTR des deux molécules furent injectées dans des zygotes pour évaluer leur dynamique traductionnelle. Les résultats ont montré que les éléments cis-régulateurs localisés dans les 3’-UTRs contrôlent leur synchronisation traductionnelle et suggèrent une association entre la compétence développementale et la capacité de synthèse de ces protéines. Ceci conduit à l’idée que ces facteurs de transcription cruciaux sont aussi contrôlés au niveau traductionnel chez les embryons précoces. Les connaissances acquises ont joué un rôle essentiel pour définir le contrôle potentiel des molécules maternelles sur les embryons au début de leur développement. Cette étude nous montre aussi une utilisation potentielle de cette information ainsi que les nouveaux défis présents dans le secteur des technologies reproductives.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacteria that degrade polycyclic aromatic hydrocarbons (PAHs) in the estuarine surface microlayer (SML) of the Ria de Aveiro, Portugal—which is chronically polluted with oil hydrocarbons (OH)—were isolated and characterized; Pseudomonas was dominant among the PAH-degrading bacteria. Screening for PAH dioxygenase genes detected almost identical nahAc genes (encoding the alpha subunits of naphthalene dioxygenase) in 2 phylogenetically distinct isolates: Pseudomonas sp. and an unknown species of the family Enterobacteriaceae; this suggested that horizontal transfer of nah genes might be involved in PAH degradation in the SML. We also investigated the effect of PAH contamination on the spatial variability of the bacterioneuston along a gradient of pollution in the estuarine system of the Ria de Aveiro. Culture-independent techniques—fluorescence in situ hy - bridization (FISH) and denaturing-gradient gel electrophoresis (DGGE)—revealed a similar structure among the bacterioneuston communities along the estuary. In contrast, we detected differences in the relative abundance and diversity of organisms of the Gammaproteobacteria, including those of the genus Pseudomonas (which belongs to the Gammaproteobacteria). This is the first insight into the hydrocarbonoclastic bacterial communities in the SML of an estuarine area polluted with hydrocarbons. Our findings highlight the importance of SML-adapted hydrocarbonoclastic bacterioneuston as a potential source of new PAH-degrading bacteria (including new pseudomonads) with potential use in the bioremediation of hydrocarbon-polluted ecosystems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-07

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introdução: Os procedimentos de reconstrução da papila interdentária revestem-se de uma tal complexidade técnica que representam um verdadeiro desafio na área da Periodontia. O ácido hialurónico é uma substância que vem sendo cada vez mais estudada, tanto no tratamento de diversas patologias, como em situações de melhoria estética. Muito recentemente, a reconstrução mediante a injeção de ácido hialurónico na papila interdentária vem sendo desenvolvida como uma promissora alternativa às técnicas cirúrgicas de reconstrução da papila interdentária. Objectivo: O objetivo deste trabalho de revisão bibliográfica foi avaliar o potencial da utilização do ácido hialurónico na reconstrução da papila interdentária. Materiais e Métodos: Foi realizada uma pesquisa bibliográfica, entre outubro de 2013 e junho de 2014, nas bases de dados MEDLINE, B-on, Scopus e Google Académico. Dessa pesquisa resultaram 48 artigos. Foram ainda consultados dois casos clínicos gentilmente cedidos pela empresa CPMPHARMA. Resultados: Os resultados dos escassos estudos disponíveis até à data permitem afirmar que a utilização de ácido hialurónico na reconstrução da papila interdentária constitui uma importante alternativa com vantagens significativas. Conclusões: São necessários mais estudos para confirmar os resultados encontrados.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of scaffolds based on biomaterials is a promising strategy for Tissue Engineering and cellular regeneration. This work focuses on Bone Tissue Engineering, the aim is to develop electrically tailored biomaterials with different crystalline and electric features, and study their impacts onto cell biological behavior, so as to predict the materials output in the enhancement of bone tissue regeneration. It is accepted that bone exhibits piezoelectricity, a property that has been proved to be involved in bone growth/repair mechanism regulation. In addition electrical stimulations have been proved to influence bone growth and repair. Piezoelectric materials are therefore widely investigated for a potential use in bone tissue engineering. The main goal is the development of novel strategies to produce and employ piezoelectric biomaterials, with detailed knowledge of mechanisms involved in cell-material interaction. In the current work, poly (L-lactic) acid (PLLA), a synthetic semi-crystalline polymer, exhibiting biodegradibility, biocompatibility and piezoelectricity is studied and proposed as a promoter of enhanced tissue regeneration. PLLA has already been approved for implantation in human body by the Food and Drug Administration (FDA), and at the moment it is being used in several clinical strategies. The present study consists of first preparing films with different degrees of crystallinity and characterizing these PLLA films, in terms of surface and structural properties, and subsequently assessing the behavior of cells in terms of viability, proliferation, morphology and mineralization for each PLLA configuration. PLLA films were prepared using the solvent cast technique and submitted to different thermal treatments in order to obtain different degrees of crystallinity. Those platforms were then electrically poled, positively and negatively, by corona discharge in order to tailor their electrical properties. The cellular assays were conducted by using two different osteoblast cell lines grown directly onto the PLLA films:Human osteoblast Hob, a primary cell culture and Human osteosarcoma MG-63 cell line. This thesis gives also a comprehensive introduction to the area of Bone Tissue Engineering and provides a review of the work done in this field in the past until today, in that same field, including the one related with bone’s piezoelectricity. Then the experimental part deals with the effects of the crystallinity degrees and of the polarization in terms of surface properties and cellular bio assays. Three different degrees of crystallinity, and three different polarization conditions were prepared; which results in 9 different configurations under investigation.