952 resultados para PHASE-FORMATION
Resumo:
The application of nanoemulsions is due to have good stability, uniform spreading and enhance active penetration upon skin. Nanometer emulsions can be obtained by low-energy emulsification method. The required hydrophilic and lipophilic balance indicates the better balance of emulsifier for optimum system emulsification. Emulsion stability is evidently controlled for the properties of the adsorbed layer formed in the surface of its globules, know as potential zeta. The aim of this work was to evaluate the oil/water nanoemulsion of formulation obtained after 15 years of preparation. The results suggested that the nanoemulsion have performed stability for many years.
Resumo:
This work describes the synthesis in Solution of a series of related diketopiperazines with potential biological activities: cyclo(L-Pro-L-Ser), cyclo(L-Phe-L-Ser), cyclo(D-Phe-L-Ser) and the corresponding glycosylated analogs of the latter, cyclo[D-Phe-L-Ser(alpha GlcNAc)] and cyclo[D-Phe-L-Ser(beta GlcNAc)]. The synthetic approach involved coupling reactions of -OH or O-glycosylated serine benzyl esters with NFmoc-protected amino acids (Pro or Phe), followed by one-pot deprotection-cyclization reaction in the presence of 20% piperidine in DMF. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Galectin-1 (Gal-1) regulates leukocyte turnover by inducing the cell surface exposure of phosphatidylserine (PS), a ligand that targets cells for phagocytic removal, in the absence of apoptosis. Gal-1 monomer- dimer equilibrium appears to modulate Gal-1-induced PS exposure, although the mechanism underlying this regulation remains unclear. Here we show that monomer- dimer equilibrium regulates Gal-1 sensitivity to oxidation. A mutant form of Gal-1, containing C2S and V5D mutations (mGal-1), exhibits impaired dimerization and fails to induce cell surface PS exposure while retaining the ability to recognize carbohydrates and signal Ca(2+) flux in leukocytes. mGal-1 also displayed enhanced sensitivity to oxidation, whereas ligand, which partially protected Gal-1 from oxidation, enhanced Gal-1 dimerization. Continual incubation of leukocytes with Gal-1 resulted in gradual oxidative inactivation with concomitant loss of cell surface PS, whereas rapid oxidation prevented mGal-1 from inducing PS exposure. Stabilization of Gal-1 or mGal-1 with iodoacetamide fully protected Gal-1 and mGal-1 from oxidation. Alkylation-induced stabilization allowed Gal-1 to signal sustained PS exposure in leukocytes and mGal-1 to signal both Ca(2+) flux and PS exposure. Taken together, these results demonstrate that monomer-dimer equilibrium regulates Gal-1 sensitivity to oxidative inactivation and provides a mechanism whereby ligand partially protects Gal-1 from oxidation.
Resumo:
The effect of repetitive stress during acute infection with Trypanosoma cruzi (T. cruzi) on the chronic phase of ensuing Chagas` disease was the focus of this investigation. The aim of this study was to evaluate in Wistar rats the influence of repetitive stress during the acute phase of infection (7 days) with the Y strain of T. cruzi on the chronic phase of the infection (at 180 days). Exposure to ether vapor for 1min twice a day was used as a stressor. Repetitive stress enhanced the number of circulating parasites and cardiac tissue disorganization, from a moderate to a severe diffuse mononuclear inflammatory process and the presence of amastigote burden in the cardiac fibers. Immunological parameters revealed that repetitive stress triggered a reduced concanavalin A induced splenocyte proliferation in vitro with major effects on the late chronic phase. Serum interleukin-12 concentration decreased in both stressed and infected rats in the early phase of infection although it was higher on 180 days post-infection. These results suggest that repetitive stress can markedly impair the host`s immune system and enhance the pathological process during the chronic phase of Chagas` disease.
Resumo:
Glucocorticoid hormones have been implicated as an important modulator of Trypanosoma cruzi pathogenesis. Since adrenal steroid hormones play a fundamental role in modulating the immune response, we hypothesized that adrenalectomy affect the course of the experimental T. cruzi infection. This study was undertaken to determine the effects of adrenalectomy during the acute phase of T cruzi infection. Blood and tissue parasitism, macrophages, nitric oxide (NO) production and IFN-gamma were evaluated in male Wistar rats infected with the Y strain of T. cruzi. Our results show that adrenalectomized rats displayed increased number of blood and heart parasites accompanied by decreases in the total number of peritoneal macrophages and IFN-gamma when compared to controls. Adrenalectomy also reduced the levels of NO released from peritoneal macrophages of infected animals. These results suggest that adrenal corticosteroid insufficiency due to adrenalectomy could be considered an important factor during development of acute phases of experimental Chagas` disease, enhancing pathogenesis through disturbance of the host`s immune system. (C) 2008 Published by Elsevier Inc.
Resumo:
Understanding the mechanisms responsible for mediating the effects of stress on Trypanosoma cruzi infection is crucial for determining the full impact of stress on Chagas` disease and for devising effective interventions. Dehydroepiandrosterone (DHEA), a steroid hormone synthesized from pregnenolone, is secreted by the adrenal cortex in response to stress. Although its physiologic role has not been fully defined, DHEA has been shown to modulate immune function. In the present study, we evaluated the levels of corticosterone and the ability of T. cruzi infection to modulate the expression of Th2 cytokines in Wistar rats with chronic Chagas` disease submitted to repetitive stress. The animals submitted to stress displayed enhanced levels of corticosterone as compared to control counterparts. Stress and infection triggered the most elevated concentrations of corticosterone. DHEA significantly reduced corticosterone levels for infected and stressed animals with DHEA. The infected animals displayed enhanced levels of IL-10 and IL-4 as compared to control ones. Stress combined with infection triggered the higher levels of IL-10 and IL-4. DHEA alone and combined with infection and stress significantly increased IL-10 and IL-4 levels. Then, this study might provide additional clues about factors that regulate some of the immunoregulatory aspects of T. cruzi infection and might offer new opportunities for therapeutic interventions. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
In the present study, experiments were carried out to evaluate the mutagenic potential and genotoxic effects of Crotalus durissus terrificus snake venom and its isolated toxins on human lymphocytes, using the micronucleus and comet assays. Significant damage to DNA was observed for crotoxin and crotapotin (CA). Basic phospholipase A(2) (CB) and crotamine did not present any mutagenic potential when evaluated by the micronucleus test. C. d. terrificus crude venom was able to induce the formation of micronuclei, similarly to the mutagenic drug used as a positive control. In the comet assay, all the toxins tested (crotamine, crotoxin, CB and CA) and C. d. terrificus venom presented genotoxic activity. Studies on the cytogenetic toxicology of animal venoms and their isolated proteins are still very scarce in the literature, which emphasizes the importance of the present work for the identification and characterization of potential therapeutic agents, as well as for the better understanding of the mechanisms of action of toxins on the human body. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We developed a new method for the quantification of parasites in tissue. Trypanosoma cruzi strain CL parasites were genetically engineered to express the Escherichia coli beta-galactosidase gene, lacZ and this enzyme is able to catalyze a colorimetric reaction with chlorophenol red beta-d galactopyranoside (CPRG) as the substrate. The animals were infected with clone CL Brener strain B5 of T. cruzi and treated with benznidazole in order to verify the reduction in the number of parasites in tissue study by quantifying the enzyme beta-galactosidase. The assay demonstrates a reduction in the number of parasites in the groups treated. Thus, this test can be used to test other substances with the aim of verifying the effectiveness in the chronic phase of experimental Chagas` disease.
Resumo:
Dehydroepiandrosterone (DHEA) has long been considered as a precursor for many steroid hormones. It also enhances the immune responses against a wide range of viral, bacterial, and parasitic pathogens. The aims of this work were to evaluate the influences of exogenous DHEA treatment on Wistar rats infected with the Y strain of Trypanosoma cruzi during the acute and its influence on the chronic phase of infection. Animals were subcutaneous treated with 40 mg/kg body weight/day of DHEA. DHEA treatment promoted increased lymphoproliferative responses as well as enhanced concentrations of NO and IL-12. So, we point in the direction that our results validate the utility of the use of DHEA as an alternative therapy candidate against T cruzi. (C) 2009 Published by Elsevier B.V.
Resumo:
Oil-in-water (O/W) emulsions containing gel phase were developed with cupuassu and/or cocoa butter from Brazilian ecosystem. They were subjected to storage advanced stability tests (SAST) and to in vivo corneometry evaluation. The evaluated emulsions showed great performance in the evaluated conditions considering that no significant variation was observed. The moisturizing potential was advantageous even without the moisturizing active. The formulation was considered a good cosmetic moisturizing cream and a promise as a drug carrier.
Resumo:
Inorganic metal oxide materials are generally poor proton conductors as conductivities are lower than 10-5-10-6 S.cm-1. However, by functionalising Silica, Zirconia or Titania, proton conduction increases by up to 5 orders of magnitude. Hence, functionalised nanomaterials are becoming very competitive against conventional electrolyte materials such as Nafion. In this work, sol-gel processes are employed to produce silica phosphate, zirconia phosphate and titania phosphate functionalised nanoparticles. Furthermore, conductivities at hydrate conditions are investigated, and nanoparticle formation and functionalisation effects on proton conductivity are discussed. Results show conductivities up to 10-1 S.cm-1 (95% RH). Proton conduction increases with the functionalisation content, however heat treatment of nanoparticles locks the functionality in the crystal phase, thus inhibiting proton conduction. Controlling the mesopore phase allows for high proton conduction at hydrated conditions, clearly indicating facilitated ion transport through the pore channels.
Resumo:
Genetic recombination can produce heterogeneous phylogenetic histories within a set of homologous genes. Delineating recombination events is important in the study of molecular evolution, as inference of such events provides a clearer picture of the phylogenetic relationships among different gene sequences or genomes. Nevertheless, detecting recombination events can be a daunting task, as the performance of different recombination-detecting approaches can vary, depending on evolutionary events that take place after recombination. We recently evaluated the effects of post-recombination events on the prediction accuracy of recombination-detecting approaches using simulated nucleotide sequence data. The main conclusion, supported by other studies, is that one should not depend on a single method when searching for recombination events. In this paper, we introduce a two-phase strategy, applying three statistical measures to detect the occurrence of recombination events, and a Bayesian phylogenetic approach in delineating breakpoints of such events in nucleotide sequences. We evaluate the performance of these approaches using simulated data, and demonstrate the applicability of this strategy to empirical data. The two-phase strategy proves to be time-efficient when applied to large datasets, and yields high-confidence results.
Resumo:
We propose and demonstrate, theoretically and experimentally, a novel achromatic optical phase shifter modulator based on a frequency-domain optical delay line configured to maintain zero group delay as variable phase delay is generated by means of tilting a mirror. Compared with previously reported phase shifter modulators, e.g., based on the Pancharatnam (geometric) phase, our device is high speed and polarization insensitive and produces a large, bounded phase delay that, uniquely, is one-to-one mapped to a measurable parameter, the tilt angle.
Resumo:
We introduce three area preserving maps with phase space structures which resemble circle packings. Each mapping is derived from a kicked Hamiltonian system with one of the three different phase space geometries (planar, hyperbolic or spherical) and exhibits an infinite number of coexisting stable periodic orbits which appear to ‘pack’ the phase space with circular resonances.
Resumo:
Genetic recombination can produce heterogeneous phylogenetic histories within a set of homologous genes. Delineating recombination events is important in the study of molecular evolution, as inference of such events provides a clearer picture of the phylogenetic relationships among different gene sequences or genomes. Nevertheless, detecting recombination events can be a daunting task, as the performance of different recombination-detecting approaches can vary, depending on evolutionary events that take place after recombination. We previously evaluated the effects of post-recombination events on the prediction accuracy of recombination-detecting approaches using simulated nucleotide sequence data. The main conclusion, supported by other studies, is that one should not depend on a single method when searching for recombination events. In this paper, we introduce a two-phase strategy, applying three statistical measures to detect the occurrence of recombination events, and a Bayesian phylogenetic approach to delineate breakpoints of such events in nucleotide sequences. We evaluate the performance of these approaches using simulated data, and demonstrate the applicability of this strategy to empirical data. The two-phase strategy proves to be time-efficient when applied to large datasets, and yields high-confidence results.