961 resultados para PHASE-CONTRAST MICROSCOPY
Resumo:
The hydrogenation of cyclohexene over palladium supported in a microporous gamma-alumina pellet is studied thermogravimetrically with a view to measuring the extent of partial internal wetting associated with the different steady state branches. As many as three steady state branches having significantly different degrees of internal wetting and reaction rates, with transitions between them, are confirmed from observations of catalyst weight change. It is seen that with reduction in catalyst activity the middle branch, obtained by condensation from a vapor filled pellet, is much more prominent without showing an evaporative transition for the range of hydrogen partial pressures used here. The catalyst activity is therefore an important parameter affecting the structure of the steady state branches. Hysteresis effects are found to occur, and the thermogravimetric results also confirm the importance of history in determining the catalyst state. The measured degree of wetting is in accordance with that estimated from a mathematical model incorporating capillary condensation effects in addition to reaction-diffusion phenomena. The same model also satisfactorily interprets the reaction rate variations and transitions seen in the present work.
Resumo:
This communication describes an improved one-step solid-phase extraction method for the recovery of morphine (M), morphine-3-glucuronide (M3G), and morphine-6-glucuronide (M6G) from human plasma with reduced coextraction of endogenous plasma constituents, compared to that of the authors' previously reported method. The magnitude of the peak caused by endogenous plasma components in the chromatogram that eluted immediately before the retention time of M3G has been reduced (similar to 80%) significantly (p < 0.01) while achieving high extraction efficiencies for the compounds of interest, viz morphine, M6G, and M3G (93.8 +/- 2.5, 91.7 +/- 1.7, and 93.1 +/- 2.2%, respectively). Furthermore, when the improved solid-phase extraction method was used, the extraction cartridge-derived late-eluting peak (retention time 90 to 100 minutes) reported in our previous method, was no longer present in the plasma extracts. Therefore the combined effect of reducing the recovery of the endogenous components of plasma that chromatographed just before the retention time of M3G and the removal of the late-eluting, extraction cartridge-derived peak has resulted in a decrease in the chromatographic run-time to 20 minutes, thereby increasing the sample throughput by up to 100%.
Resumo:
We demonstrate a contradiction of quantum mechanics with local hidden variable theories for continuous quadrature phase amplitude (position and momentum) measurements. For any quantum state, this contradiction is lost for situations where the quadrature phase amplitude results are always macroscopically distinct. We show that for optical realizations of this experiment, where one uses homodyne detection techniques to perform the quadrature phase amplitude measurement, one has an amplification prior to detection, so that macroscopic fields are incident on photodiode detectors. The high efficiencies of such detectors may open a way for a loophole-free test of local hidden variable theories.
Resumo:
The effects of the support phase and catalyst preparation methods on catalytic activity and carbon deposition were systematically investigated over nickel catalysts supported on Al2O3, SiO2 and MgO for the reforming reaction of methane with carbon dioxide. It is found that the pore structure of the support and metal-support interaction significantly affected the catalytic activity and coking resistance. Catalyst with well-developed porosity exhibited higher catalytic activity. Strong interaction between metal and the support made the catalyst more resistant to sintering and coking, thus resulting in a longer time of catalyst stability. (C) 1998 Elsevier Science B.V.
Resumo:
We consider one source of decoherence for a single trapped ion due to intensity and phase fluctuations in the exciting laser pulses. For simplicity we assume that the stochastic processes involved are white noise processes, which enables us to give a simple master equation description of this source of decoherence. This master equation is averaged over the noise, and is sufficient to describe the results of experiments that probe the oscillations in the electronic populations as energy is exchanged between the internal and electronic motion. Our results are in good qualitative agreement with recent experiments and predict that the decoherence rate will depend on vibrational quantum number in different ways depending on which vibrational excitation sideband is used.
Resumo:
Segregation of mRNAs in the cytoplasm of polar cells has been demonstrated for proteins involved in Xenopus and Drosophila oogenesis, and for some proteins in somatic cells. It is assumed that vectorial transport of the messages is generally responsible for this localization. The mRNA encoding the basic protein of central nervous system myelin is selectively transported to the distal ends of the processes of oligodendrocytes, where it is anchored to the myelin membrane and translated. This transport is dependent on a 21-nucleotide cis-acting segment of the 3'-untranslated region (RTS). Proteins that bind to this cis-acting segment have now been isolated from extracts of rat brain. A group of six 35-42-kDa proteins bind to a 35-base oligoribonucleotide incorporating the RTS, but not to several oligoribonucleotides with the same composition but randomized sequences, thus establishing specificity for the base sequence in the RTS. The most abundant of these proteins has been identified, by Edman sequencing of tryptic peptides and mass spectroscopy, as heterogeneous nuclear ribonucleoprotein (hnRNP) A2, a 36-kDa member of a family of proteins that are primarily, but not solely, intranuclear. This protein was most abundant in samples from rat brain and testis, with lower amounts in other tissues. It was separated from the other polypeptides by using reverse-phase HPLC and shown to retain preferential association with the RTS. In cultured oligodendrocytes, hnRNP A2 was demonstrated by confocal microscopy to be distributed throughout the nucleus, cell soma, and processes.
Resumo:
The one-dimensional Holstein model of spinless fermions interacting with dispersionless phonons is studied using a new variant of the density matrix renormalization group. By examining various low-energy excitations of finite chains, the metal-insulator phase boundary is determined precisely and agrees with the predictions of strong coupling theory in the antiadiabatic regime and is consistent with renormalization group arguments in the adiabatic regime. The Luttinger liquid parameters, determined by finite-size scaling, are consistent with a Kosterlitz-Thouless transition.
Resumo:
Plant cells are characterized by low water content, so the fraction of cell volume (volume fraction) in a vessel is large compared with other cell systems, even if the cell concentrations are the same. Therefore, concentration of plant cells should preferably be expressed by the liquid volume basis rather than by the total vessel volume basis. In this paper, a new model is proposed to analyze behavior of a plant cell culture by dividing the cell suspension into the biotic- and abiotic-phases, Using this model, we analyzed the cell-growth and the alkaloid production by Catharanthus roseus, Large errors in the simulated results were observed if the phase-segregation was not considered.
Resumo:
A sensitive and reproducible solid-phase extraction (SPE) method for the quantification of oxycodone in human plasma was developed. Varian Certify SPE cartridges containing both C-8 and benzoic acid functional groups were the most suitable for the extraction of oxycodone and codeine (internal standard), with consistently high (greater than or equal to 80%) and reproducible recoveries. The elution mobile phase consisted of 1.2 ml of butyl chloride-isopropanol (80:20, v/v) containing 2% ammonia. The quantification limit for oxycodone was 5.3 pmol on-column. Within-day and inter-day coefficients of variation were 1.2% and 6.8% respectively for 284 nM oxycodone and 9.5% and 6.2% respectively for 28.4 nM oxycodone using 0.5-ml plasma aliquots. (C) 1998 Elsevier Science BN. All rights reserved.
Resumo:
Magnetic resonance microscopy (MRM) depends on the use of high field, superconducting magnet systems for its operation. The magnets that are conventionally used are those that were initially designed for chemical structural analysis work. A novel, compact magnet designed specifically for MRM is presented here, and while preserving high field, high homogeneity conditions, has a length less than one-third that of conventional systems. This enables much better access to samples, an important consideration in many MRM experiments. As the homogeneity of a magnet is strongly dependent on its length, novel geometries and optimization techniques are required to meet the requirements of MRM in a compact system. An important outcome of the stochastic optimization performed in this work, is that the use used of a thin superconducting solenoid surrounded by counterwound disk windings provides a mechanism for drastic length reductions over conventional magnet designs. (C) 1998 American Institute of Physics.
Resumo:
To investigate the growth-regulating action of estrogen on vascular smooth muscle cells (SMC), effects of beta-17-estradiol (beta-E-2) on phenotypic modulation and proliferation of rabbit aortic SMC were observed in vitro. At 10(-8) M, beta-E-2 significantly slowed the decrease in volume fraction of myofilaments (V(v)myo) of freshly dispersed SMCs in primary culture, indicating an inhibitory effect of beta-E-2 On spontaneous phenotypic modulation of SMC from a contractile to a synthetic phenotype. Freshly dispersed SMCs treated with beta-E-2 also had a relatively longer quiescent phase than control cells before intense proliferation occurred. This was in contrast to SMCs in passage 2-3 (synthetic state), where beta-E-2-treated cells replicated significantly faster than untreated cells. beta-E-2 also markedly enhanced the serum-induced DNA synthesis of synthetic SMCs in a concentration-dependent manner within physiological range (10(-10) to 10-8 M). These findings indicate that the growth-regulating effect of estrogen on vascular SMC is dependent on the cell's phenotypic stare. It delays the cell cycle re-entry of the contractile SMCs by retarding their phenotypic modulation however, once cells have modulated to the synthetic phenotype, it promotes their replication. (C) 1998 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
We study the spectral and noise properties of the fluorescence field emitted from a two-level atom driven by a beam of squeezed light. For a weak driving field we derive simple analytical formulae for the fluorescence and quadrature-noise spectra which are valid for an arbitrary bandwidth of the squeezed field. We analyse the spectra in the regime where the squeezing bandwidth is smaller or comparable to the atomic linewidth, the area where non-Markovian effects are important. We emphasize that there is a noticable difference between the fluorescence spectra for the thermal and squeezed field excitations. In both cases the spectrum can be narrower than any bandwidth involved in the process. However, as we point out for the squeezed driving field the linewidth narrowing, being much larger than in the thermal-field case, can be attributed to the squeezing of the fluctuations in the driving held. We also calculate the quadrature-noise spectrum of the emitted fluorescence, and find that for a detuned squeezed field the fluorescence spectrum does not reveal the quadrature-noise spectrum. In contrast to the fluorescence spectrum having two peaks, the quadrature-noise spectrum exhibits three peaks. We explain this difference as arising from the competiting three-photon scattering processes. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
We present a potential realization of the Greenberger-Horne-Zeilinger all or nothing contradiction of quantum mechanics with local realism using phase measurement techniques in a simple photon number triplet. Such a triplet could be generated using nondegenerate parametric oscillation. [S0031-9007(98)07671-6].
Resumo:
The corrosion behaviour of AZ21, AZ501 and AZ91 was studied in 1 N NaCl at pH 11 by measuring electrochemical polarization curves, electrochemical AC impedance spectroscopy (EIS) and simultaneously measuring the hydrogen evolution rate and the: magnesium dissolution rate. The corrosion rates increased in the following order: AZ501 < AZ21 < AZ91. The: corrosion behaviour was related to alloy microstructure as revealed by optical and electron microscopy. The beta phase was very stable in the test solution and was an effective cathode. The beta phase served two roles, as a barrier and as a galvanic cathode. If the beta phase is present in the alpha matrix as intergranular precipitates with a small volume fraction, then the beta phase mainly serves as a galvanic cathode, and accelerates the corrosion of the alpha matrix. If the beta Fraction is high, then the beta phase may mainly act as an anodic barrier to inhibit the overall corrosion of the alloy. The composition and compositional distribution in the alpha phase is also crucial to the overall corrosion performance of dual phase alloys. Increasing the aluminum concentration in the alpha phase increases the anodic dissolution rate and also increases the cathodic hydrogen evolution rate. Increasing the zinc concentration in the alpha phase may have the opposite effect. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
An experimental study on the ternary system PbO-ZnO-SiO2, in air by high-temperature equilibration and quenching techniques followed by electron probe X-ray microanalysis was carried out as part of the wider research program on the six-component system PbO-ZnO-SiO2-CaO-FeO-Fe2O3, which combines experimental and thermodynamic computer modeling techniques to characterize zinc and lead industrial slags. Liquidus and solidus data were reported for all primary phase fields in the system PbO-ZnO-SiO2 in the temperature range 640 degrees C to 1400 degrees C (913 to 1673 K).