993 resultados para PASSIVE-MATRIX DISPLAY
Resumo:
In this paper we use a simple normal form approach of scale invariant fields to investigate scaling laws of passive scalars in turbulence. The coupling equations for velocity and passive scalar moments are scale covariant. Their solution shows that passive scalars in turbulence do not generically follow a general scaling observed for velocity field because of coupling effects.
Resumo:
The axisymmetric problem of an elastic fiber perfectly bonded to a nonhomogeneous elastic matrix which contains an annular crack going through the interface into the fiber under axially symmetric shear stress is considered. The nature of the stress singularity is studied. It is shown that at the irregular point on the interface, whether the shear modulus is continuous or discontinuous the stresses are bounded. The problem is formulated in terms of a singular integral equation and can be solved by a regular method. The stress intensity factors and crack surface displacement are given.
Resumo:
The mechanism of ductile damage caused by secondary void damage in the matrix around primary voids is studied by large strain, finite element analysis. A cylinder embedding an initially spherical void, a plane stress cell with a circular void and plane strain cell with a cylindrical or a flat void are analysed under different loading conditions. Secondary voids of smaller scale size nucleate in the strain hardening matrix, according to the requirements of some stress/strain criteria. Their growth and coalescence, handled by the empty element technique, demonstrate distinct mechanisms of damage as circumstances change. The macroscopic stress-strain curves are decomposed and illustrated in the form of the deviatoric and the volumetric parts. Concerning the stress response and the void growth prediction, comparisons are made between the present numerical results and those of previous authors. It is shown that loading condition, void growth history and void shape effect incorporated with the interaction between two generations of voids should be accounted for besides the void volume fraction.
Resumo:
The statistical-mechanics theory of the passive scalar field convected by turbulence, developed in an earlier paper [Phys. Fluids 28, 1299 (1985)], is extended to the case of a small molecular Prandtl number. The set of governing integral equations is solved by the equation-error method. The resultant scalar-variance spectrum for the inertial range is F(k)~x−5/3/[1+1.21x1.67(1+0.353x2.32)], where x is the wavenumber scaled by Corrsin's dissipation wavenumber. This result reduces to the − (5)/(3) law in the inertial-convective range. It also approximately reduces to the − (17)/(3) law in the inertial-diffusive range, but the proportionality constant differs from Batchelor's by a factor of 3.6.
Resumo:
Classical statistical mechanics is applied to the study of a passive scalar field convected by isotropic turbulence. A complete set of independent real parameters and dynamic equations are worked out to describe the dynamic state of the passive scalar field. The corresponding Liouville equation is solved by a perturbation method based upon a Langevin–Fokker–Planck model. The closure problem is treated by a variational approach reported in earlier papers. Two integral equations are obtained for two unknown functions: the scalar variance spectrum F(k) and the effective damping coefficient (k). The appearance of the energy spectrum of the velocity field in the two integral equations represents the coupling of the scalar field with the velocity field. As an application of the theory, the two integral equations are solved to derive the inertial-convective-range spectrum, obtaining F(k)=0.61 −1/3 k−5/3. Here is the dissipation rate of the scalar variance and is the dissipation rate of the energy of the velocity field. This theoretical value of the scalar Kolmogorov constant, 0.61, is in good agreement with experiments.
Resumo:
Furthermore, the compressed flow driven by the piston is discussed. The consistent solution of gasdynamical equations including solar gravity is obtained for the unsteady and two-dimensional configuration, which is applied to the region between the piston and shock wave. This solution may satisfy the jump conditions of shock wave, which separates the region of compressed flow and quiet corona.