976 resultados para PANCREATIC LESION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adipocyte derived peptide hormone leptin is known to regulate apoptosis and cell viability in several cells and tissues, as well as having several pancreatic islet beta-cell specific effects such as inhibition of glucose-stimulated insulin secretion. This study investigated the effects of leptin upon apoptosis induced by serum depletion and on expression of the apoptotic regulators B-cell leukaemia 2 gene product (BCL-2) and BCL2-associated X protein (Bax) in the glucose-responsive BRIN-BD11 beta-cell line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adipokine resistin is known to induce insulin resistance in rodent tissues. Increases in adipose tissue mass are known to have a negative effect on pancreatic beta-cell function, although the mechanisms are poorly understood. This study investigated the effects of resistin on insulin secretion, insulin receptor expression and cell viability in pancreatic beta-cells. BTC-6 or BRIN-BD11 cells were treated for 24h with resistin, and insulin receptor expression, insulin secretion and cell viability were measured. Incubation with 40ng/ml resistin caused significant decreases in insulin receptor mRNA and protein expression, but did not affect insulin secretion. At low concentrations, resistin caused significant increases in cell viability. These data implicate resistin as a factor that may regulate beta-cell function/viability, and suggests a potential mechanism by which increased adiposity causes beta-cell dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Carbon monoxide, the gaseous product of heme oxygenase, is a signalling molecule with a broad spectrum of biological activities. The aim of this study was to investigate the effects of carbon monoxide on proliferation of human pancreatic cancer. Methods: In vitro studies were performed on human pancreatic cancer cells (CAPAN-2, BxPc3, and PaTu-8902) treated with a carbon monoxide-releasing molecule or its inactive counterpart, or exposed to carbon monoxide gas (500. ppm/24. h). For in vivo studies, pancreatic cancer cells (CAPAN-2/PaTu-8902) were xenotransplanted subcutaneously into athymic mice, subsequently treated with carbon monoxide-releasing molecule (35. mg/kg b.w. i.p./day), or exposed to safe doses of carbon monoxide (500. ppm 1. h/day; n=. 6 in each group). Results: Both carbon monoxide-releasing molecule and carbon monoxide exposure significantly inhibited proliferation of human pancreatic cancer cells (p<0.05). A substantial decrease in Akt phosphorylation was observed in carbon monoxide-releasing molecule compared with inactive carbon monoxide-releasing molecule treated cancer cells (by 30-50%, p<. 0.05). Simultaneously, carbon monoxide-releasing molecule and carbon monoxide exposure inhibited tumour proliferation and microvascular density of xenotransplanted tumours (p<0.01), and doubled the survival rates (p<0.005). Exposure of mice to carbon monoxide led to an almost 3-fold increase in carbon monoxide content in tumour tissues (p=0.006). Conclusion: These data suggest a new biological function for carbon monoxide in carcinogenesis, and point to the potential chemotherapeutic/chemoadjuvant use of carbon monoxide in pancreatic cancer. © 2013 Editrice Gastroenterologica Italiana S.r.l.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluates the antidiabetic potential of an enzyme-resistant analog, (Val8)GLP-1. The effects of daily administration of a novel dipeptidyl peptidase IV-resistant glucagon-like peptide-1 (GLP-1) analog, (Val8)GLP-1, on glucose tolerance and pancreatic β-cell function were examined in obese-diabetic (ob/ob) mice. Acute intraperitoneal administration of (Val8)GLP-1 (6.25-25 nmol/kg) with glucose increased the insulin response and reduced the glycemic excursion in a dose-dependent manner. The effects of (Val8)GLP-1 were greater and longer lasting than native GLP-1. Once-daily subcutaneous administration of (Val8)GLP-1 (25 nmol/kg) for 21 days reduced plasma glucose concentrations, increased plasma insulin, and reduced body weight more than native GLP-1 without a significant change in daily food intake. Furthermore, (Val8)GLP-1 improved glucose tolerance, reduced the glycemic excursion after feeding, increased the plasma insulin response to glucose and feeding, and improved insulin sensitivity. These effects were consistently greater with (Val8)GLP-1 than with native GLP-1, and both peptides retained or increased their acute efficacy compared with initial administration. (Val8)GLP-1 treatment increased average islet area 1.2-fold without changing the number of islets, resulting in an increased number of larger islets. These data demonstrate that (Val8)GLP-1 is more effective and longer acting than native GLP-1 in obese-diabetic ob/ob mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The basal ganglia are interconnected with cortical areas involved in behavioural, cognitive and emotional processes, in addition to movement regulation. Little is known about which of these functions are associated with individual basal ganglia substructures. Methods: Pubmed was searched for literature related to behavioural, cognitive and emotional symptoms associated with focal lesions to basal ganglia structures in humans. Results: Six case-control studies and two case reports were identified as relevant. Lesion sites included the caudate nucleus, putamen and globus pallidus. These were associated with a spectrum of behavioural and cognitive symptoms, including abulia, poor working memory and deficits in emotional recognition. Discussion: It is often difficult to precisely map associations between cognitive, emotional or behavioural functions and particular basal ganglia substructures, due to the non-specific nature of the lesions. However, evidence from lesion studies shows that most symptoms correspond with established non-motor frontal-subcortical circuits. © 2013-IOS Press and the authors. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classi cation: 62N01, 62N05, 62P10, 92D10, 92D30.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colon and pancreatic cancers contribute to 90,000 deaths each year in the USA. These cancers lack targeted therapeutics due to heterogeneity of the disease and multiple causative factors. One important factor that contributes to increased colon and pancreatic cancer risk is gastrin. Gastrin mediates its actions through two G-protein coupled receptors (GPCRs): cholecystokinin receptor A (CCK-A) and CCK-B/gastrin receptor. Previous studies have indicated that colon cancer predominantly expresses CCK-A and responds to CCK-A isoform antagonists. However, many CCK-A antagonists have failed in the clinic due to poor pharmacokinetic properties or lack of efficacy. In the present study, we synthesized a library of CCK-A isoform-selective antagonists and tested them in various colon and pancreatic cancer preclinical models. The lead CCK-A isoform, selective antagonist PNB-028, bound to CCK-A at 12 nM with a 60-fold selectivity towards CCK-A over CCK-B. Furthermore, it inhibited the proliferation of CCK-A-expressing colon and pancreatic cancer cells without affecting the proliferation of non-cancerous cells. PNB-028 was also extremely effective in inhibiting the growth of MAC-16 and LoVo colon cancer and MIA PaCa pancreatic cancer xenografts in immune-compromised mice. Genomewide microarray and kinase-array studies indicate that PNB-028 inhibited oncogenic kinases and angiogenic factors to inhibit the growth of colon cancer xenografts. Safety pharmacology and toxicology studies have indicated that PNB-028 is extremely safe and has a wide safety margin. These studies suggest that targeting CCK-A selectively renders promise to treat colon and pancreatic cancers and that PNB-028 could become the next-generation treatment option.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trinucleotide repeat (TNR) expansions and deletions are associated with human neurodegeneration and cancer. However, their underlying mechanisms remain to be elucidated. Recent studies have demonstrated that CAG repeat expansions can be initiated by oxidative DNA base damage and fulfilled by base excision repair (BER), suggesting active roles for oxidative DNA damage and BER in TNR instability. Here, we provide the first evidence that oxidative DNA damage can induce CTG repeat deletions along with limited expansions in human cells. Biochemical characterization of BER in the context of (CTG)20 repeats further revealed that repeat instability correlated with the position of a base lesion in the repeat tract. A lesion located at the 59-end of CTG repeats resulted in expansion, whereas a lesion located either in the middle or the 39-end of the repeats led to deletions only. The positioning effects appeared to be determined by the formation of hairpins at various locations on the template and the damaged strands that were bypassed by DNA polymerase b and processed by flap endonuclease 1 with different efficiency. Our study indicates that the position of a DNA base lesion governs whether TNR is expanded or deleted through BER.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer in part due to inherent resistance to chemotherapy, including the first-line drug gemcitabine. Gemcitabine is a nucleoside pyrimidine analog that has long been the backbone of chemotherapy for PDAC, both as a single agent, and more recently, in combination with nab-paclitaxel. Since gemcitabine is hydrophilic, it must be transported through the hydrophobic cell membrane by transmembrane nucleoside transporters. Human equilibrative nucleoside transporter-1 (hENT1) and human concentrative nucleoside transporter-3 (hCNT3) both have important roles in the cellular uptake of the nucleoside analog gemcitabine. While low expression of hENT1 and hCNT3 has been linked to gemcitabine resistance clinically, mechanisms regulating their expression in the PDAC tumor microenvironment are largely unknown. We identified that the matricellular protein Cysteine-Rich Angiogenic Inducer 61 (CYR61) negatively regulates expression of hENT1 and hCNT3. CRISPR/Cas9-mediated knockout of CYR61 significantly increased expression of hENT1 and hCNT3 and cellular uptake of gemcitabine. CRSIPR-mediated knockout of CYR61 sensitized PDAC cells to gemcitabine-induced apoptosis. Conversely, adenovirus-mediated overexpression of CYR61 decreased hENT1 expression and reduced gemcitabine-induced apoptosis. We demonstrate that CYR61 is expressed primarily by stromal pancreatic stellate cells (PSCs) within the PDAC tumor microenvironment, with Transforming Growth Factor- β (TGF-β) inducing the expression of CYR61 in PSCs through canonical TGF-β-ALK5-Smad signaling. Activation of TGF-β signaling or expression of CYR61 in PSCs promotes resistance to gemcitabine in an in vitro co-culture assay with PDAC cells. Our results identify CYR61 as a TGF-β induced stromal-derived factor that regulates gemcitabine sensitivity in PDAC and suggest that targeting CYR61 may improve chemotherapy response in PDAC patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-07