953 resultados para Orbitomedial prefrontal cortex
Resumo:
In rats, phospholipase A(2) (PLA(2)) activity was found to be increased in the hippocampus immediately after training and retrieval of a contextual fear conditioning paradigm (step-down inhibitory avoidance [IA] task). In the present study we investigated whether PLA(2) is also activated in the cerebral cortex of rats in association with contextual fear learning and retrieval. We observed that IA training induces a rapid (immediately after training) and long-lasting (3 h after training) activation of PLA(2) in both frontal and parietal cortices. However, immediately after retrieval (measured 24 h after training), PLA(2) activity was increased just in the parietal cortex. These findings suggest that PLA(2) activity is differentially required in the frontal and parietal cortices for the mechanisms of contextual learning and retrieval. Because reduced brain PLA(2) activity has been reported in Alzheimer disease, our results suggest that stimulation of PLA(2) activity may offer new treatment strategies for this disease.
Resumo:
In addition to pain and neurovegetative symptoms, patients with severe forms of complex regional pain syndrome (CRPS) develop a broad range of symptoms, including sensory disturbances, motor impairment and dystonic posturing. While most patients respond to medical therapy, some are considered refractory and become surgical candidates. To date, the most commonly used surgical procedure for CRPS has been spinal cord stimulation. This therapy often leads to important analgesic effects, but no sensory or motor improvements. We report on 2 patients with pain related to CRPS and severe functional deficits treated with motor cortex stimulation (MCS) who not only had significant analgesic effects, but also improvements in sensory and motor symptoms. In the long term (27 and 36 months after surgery), visual analog scale pain scores were improved by 60-70% as compared to baseline. There was also a significant increase in the range of motion in the joints of the affected limbs and an improvement in allodynia, hyperpathia and hypoesthesia. Positron emission tomography scan in both subjects revealed that MCS influenced regions involved in the circuitry of pain. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
There remains a lack of solid evidence showing whether transcranial stimulation with weak alternating current (transcranial alternating current stimulation, tACS) can in fact induce significant neurophysiological effects. Previously, a study in which tACS was applied for 2 and 5 min with current density = 0.16-0.25 A/m(2) was unable to show robust effects on cortical excitability. Here we applied tACS at a significantly higher current density (0.80 A/m(2)) for a considerably longer duration (20 min) and were indeed able to demonstrate measurable changes to cortical excitability. Our results show that active 15 Hz tACS of the motor cortex (electrodes placed at C3 and C4) significantly diminished the amplitude of motor evoked potentials and decreased intracortical facilitation (ICF) as compared to baseline and sham stimulation. In addition, we show that our method of sham tACS is a reliable control condition. These results support the notion that AC stimulation with weak currents can induce significant changes in brain excitability; in this case, 15 Hz tACS led to a pattern of inhibition of cortical excitability. We propose that tACS may have a dampening effect on cortical networks and perhaps interfere with the temporal and spatial summation of weak subthreshold electric potentials. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background: The spectrum approach was used to examine contributions of comorbid symptom dimensions of substance abuse and eating disorder to abnormal prefrontal-cortical and subcortical-striatal activity to happy and fear faces previously demonstrated in bipolar disorder (BD). Method: Fourteen remitted BD-type I and sixteen healthy individuals viewed neutral, mild and intense happy and fear faces in two event-related fMRI experiments. All individuals completed Substance-Use and Eating-Disorder Spectrum measures. Region-of-Interest analyses for bilateral prefrontal and subcortical-striatal regions were performed. Results: BD individuals scored significantly higher on these spectrum measures than healthy individuals (p<0.05), and were distinguished by activity in prefrontal and subcortical-striatal regions. BD relative to healthy individuals showed reduced dorsal prefrontal-cortical activity to all faces. Only BD individuals showed greater subcortical-striatal activity to happy and neutral faces. In BD individuals, negative correlations were shown between substance use severity and right PFC activity to intense happy faces (p<0.04), and between substance use severity and right caudate nucleus activity to neutral faces (p<0.03). Positive correlations were shown between eating disorder and right ventral putamen activity to intense happy (p<0.02) and neutral faces (p<0.03). Exploratory analyses revealed few significant relationships between illness variables and medication upon neural activity in BID individuals. Limitations: Small sample size of predominantly medicated BD individuals. Conclusion: This study is the first to report relationships between comorbid symptom dimensions of substance abuse and eating disorder and prefrontal-cortical and subcortical-striatal activity to facial expressions in BD. Our findings suggest that these comorbid features may contribute to observed patterns of functional abnormalities in neural systems underlying mood regulation in BD. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to investigate the influence of bromazepam on EEG and the motor learning process when healthy subjects were submitted to a typewriting task. We investigated bromazepam due to its abuse by various populations and its prevalent clinical use among older individuals which are more sensitive to the negative effects of long half-life benzodiazepines. A randomized double-blind design was used with subjects divided into three groups: placebo (n = 13), bromazepam 3 mg (n = 13) and bromazepam 6 mg (n = 13). EEG data comprising theta, alpha and beta bands was recorded before, during and after the motor task. Our results showed a lower relative power value in the theta band in the Br 6 mg group when compared with PL. We also observed a reduction in relative power in the beta band in the Br 3 mg and Br 6 mg when compared with PL group. These findings suggest that Br can contribute to a reduced working memory load in areas related to attention processes. On the other hand, it produces a higher cortical activation in areas associated with sensory integration. Such areas are responsible for accomplishing the motor learning task. The results are an example of the usefulness of integrating electrophysiological data, sensorimotor activity and a pharmacological approach to aid in our understanding of cerebral changes produced by external agents. (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Previous studies have shown that patients with major depression have an interhemispheric imbalance between right and left prefrontal and motor cortex. We aimed to investigate the interhemispheric interactions in patients with major depression using repetitive transcranial magnetic stimulation (rTMS). Thirteen patients with major depression and 14 age-matched healthy subjects participated in this study. Corticospinal excitability before and after 1 Hz rTMS (applied to the left primary motor cortex) was assessed in the left and right motor cortex and these results were compared with those in healthy subjects. There was a significant difference in the interhemispheric effects between patients with depression and healthy subjects. In healthy subjects, 1 Hz rTMS significantly decreased corticospinal excitability in the stimulated, left hemisphere and increased it in the contralateral, right hemisphere. In depressed subjects, 1 Hz rTMS also decreased corticospinal excitability in the left hemisphere; however, it induced no significant changes in corticospinal excitability in the contralateral, right hemisphere. In addition, there was a significant correlation between the degree of interhemispheric modulation and the severity of the depression as indexed by the Beck Depression Inventory scores. Our findings showing a decreased interhemispheric modulation in patients with major depression are consistent with the notion that mood disorders are associated with slow interhemispheric switching mechanisms.
Resumo:
Purpose: As reported by several authors, angiotensin II (AngII) is a proinflammatory molecule that stimulates the release of inflammatory cytokines and activates nuclear factor kappa B (NF kappa B), being also associated with the increase of cellular oxidative stress. Its production depends on the activity of the angiotensin converting enzyme (ACE) that hydrolyzes the inactive precursor angiotensin I (AngI) into AngII. It has been suggested that AngII underlies the physiopathological mechanisms of several brain disorders such as stroke, bipolar disorder, schizophrenia, and disease. The aim of the present work was to localize and quantify AngII AT1 and AT2 receptors in the cortex and hippocampus of patients with temporal lobe epilepsy related to mesial temporal sclerosis (MTS) submitted to corticoamygdalohippocampectomy for seizure control. Method: Immunohistochemistry, Western blot, and real-time PCR techniques were employed to analyze the expression of these receptors. Results: The results showed an upregulation of AngII AT1 receptor as well as its messenger ribonucleic acid (mRNA) expression in the cortex and hippocampus of patients with MTS. In addition, an increased immunoexpression of AngII AT2 receptors was found only in the hippocampus of these patients with no changes in its mRNA levels. Discussion: These data show, for the first time, changes in components of renin-angiotensin system (RAS) that could be implicated in the physiopathology of MTS.
Resumo:
A single-center experience with pediatric patients who underwent surgery for intractable rolandic epilepsy was reviewed with the aim of identifying putative factors that could influence postoperative seizure outcome in this population. Clinical data of 48 patients under 18 years of age with diagnosis of intractable rolandic epilepsy who underwent surgery from January 1996 to September 2009 were reviewed. Patients` mean age at surgery was 9.9 +/- 5.3 years; mean age at epilepsy onset was 3.9 years; mean seizure duration prior to surgery was 6 years; and mean follow-up was 5.1 years. The most frequent etiologies were cortical dysplasia, astrogliosis, tumors, tuberous sclerosis complex, and Sturge-Weber syndrome, which were observed in 20/48 (41.6%), 10/48 (20.8%), 10/48 (20.8%), 5/48 (10.4%), and 3/48 (6.2%) of the patients, respectively. After surgery, 20 patients (41.6%) showed neurological deficits, which in turn recovered within no longer than 6 months after surgery. Seizure outcome was classified as Engel class I in 29 (60.4%), Engel class II in 10 (20.8%), and Engel class III in 9 (18.8%) of the patients. The factors significantly related with seizure outcome were histological features (tumor versus non-tumor cases, p = 0.04) and lesion site (focal lesions versus non-focal lesions, p = 0.04). Tailored resection of rolandic cortex for intractable epilepsy can be safely performed in children. Accurate mapping of both functional cortex and epileptogenic areas may lead to improved seizure outcome. Tumor as well as focal lesions in hand and face motor areas are associated with good seizure outcome.
Resumo:
Objective: To investigate pathophysiological factors underlying the presence of interictal hyper-perfusion within the limits of the polymicrogyric (PMG) cortex in epileptic patients. Methods: Retrospective observational study on interictal perfusion by Single Photon Emission Computed Tomography (SPECT) in 16 patients with PMG and its correlations with a number of clinical and neurophysiological variables. Patients underwent video-EEG monitoring, neurological and psychiatric assessments, invasive EEG, and the interictal SPECT coregistered to Magnetic Resonance Imaging (MRI). Results: Patients with interictal hyperperfusion within the PMG cortex had a significantly higher spike rate on interictal EEG than patients with normal perfusion. Interictal hyperperfusion was not correlated to sex, age at epilepsy onset, age at evaluation, number of seizures per month, presence of initial precipitating insult (IPI), abnormal neurological examination, EEG findings, ictal serniology, and seizure outcome. The high interictal spike rate did not correlate to a high frequency of seizures per month. Conclusions: Our work provides further evidences for an intrinsic epileptogenesis of the PMG cortex during the interictal state, which accounts for the major rote of PMG tissue in seizure generation. These results might help to increase our understanding about epileptogenesis related to the PMG cortex, providing new toots for more tailored epilepsy surgery in PMG patients. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The electrical stimulation of the occipital (OC) or retrosplenial (RSC) cortex produces antinociception in the rat tail-flick test. These cortices send inputs to the anterior pretectal nucleus (APtN) which is implicated in antinociception and nociception. At least muscarinic cholinergic, opioid, and serotonergic mechanisms in the APtN are involved in stimulation-produced antinociception (SPA) from the nucleus. In this study, the injection of 2% lidocaine (.25 mu L) or methysergide (40 and 80 ng/.25 mu L) into the APtN reduced the duration but did not change the intensity of SPA from the OC, whereas both duration and intensity of SPA from the RSC were significantly reduced in rats treated with lidocaine or naloxone (10 and 50 ng/.25 mu L), injected into the ANN. Naloxone or methysegide injected into the APtN was ineffective against SPA from the OC or RSC, respectively. Atropine (100 ng/.25 mu L) injected into the ANN was ineffective against SPA from either the OC or RSC. We conclude that the APtN acts as an intermediary for separate descending pain inhibitory pathways activated from the OC and RSC, utilizing at least serotonin and endogenous opioid as mediators in the nucleus. Perspective: Stimulation-induced antinociception from the retrosplenial or occipital cortex in the rat tail-flick test depends on the activation of separate descending pain inhibitory pathways that utilize the APtN as a relay station. (C) 2011 by the American Pain Society
Resumo:
Functional MRI (fMRI) data often have low signal-to-noise-ratio (SNR) and are contaminated by strong interference from other physiological sources. A promising tool for extracting signals, even under low SNR conditions, is blind source separation (BSS), or independent component analysis (ICA). BSS is based on the assumption that the detected signals are a mixture of a number of independent source signals that are linearly combined via an unknown mixing matrix. BSS seeks to determine the mixing matrix to recover the source signals based on principles of statistical independence. In most cases, extraction of all sources is unnecessary; instead, a priori information can be applied to extract only the signal of interest. Herein we propose an algorithm based on a variation of ICA, called Dependent Component Analysis (DCA), where the signal of interest is extracted using a time delay obtained from an autocorrelation analysis. We applied such method to inspect functional Magnetic Resonance Imaging (fMRI) data, aiming to find the hemodynamic response that follows neuronal activation from an auditory stimulation, in human subjects. The method localized a significant signal modulation in cortical regions corresponding to the primary auditory cortex. The results obtained by DCA were also compared to those of the General Linear Model (GLM), which is the most widely used method to analyze fMRI datasets.
Resumo:
Objectives To compare the biomechanical characteristics of 2 arthrodesis techniques for the equine proximal interphalangeal joint (PIP) using either a 3-hole 4.5 mm locking compression plate (LCP) or 3-hole 4.5 mm narrow dynamic compression plate (DCP), both with 2 transarticular 5.5 mm cortex screws. Study Design Experimental. Sample Population Cadaveric adult equine forelimbs (*n=6 pairs). Methods For each forelimb pair, 1 limb was randomly assigned to 1 of 2 treatment groups and the contralateral limb by default to the other treatment group. Construct stiffness, gap formation across the PIP joint, and rotation about the PIP joint were determined for each construct before cyclic axial loading and after each of four, 5000 cycle loading regimens. After the 20,000 cycle axial loading regimen, each construct was loaded to failure. Results There were no significant differences in construct stiffness, gap formation, or sagittal plane rotation between the LCP and DCP treatment groups at any of the measured time points. Conclusion Biomechanically, fixation of the equine PIP joint with a 3-hole 4.5 mm LCP is equivalent to fixation with a 3-hole 4.5 mm narrow DCP under the test conditions used.