976 resultados para Orbital blocking
Resumo:
The interaction of Schistosoma mansoni with its host's immune system is largely affected by multiple specific and non-specific evasion mechanisms employed by the parasite to reduce the host's immune reactivity. Only little is known about these mechanisms on the molecular level. The four molecules described below are intrinsic parasitic proteins recently identified and studied in our laboratory. 1. m28-A 28kDa membrane serine protease. m28 cleaves iC3b and can thus restrict attack by effector cells utilizing complement receptors (especially CR3). Treatment with protease inhibitors potentiates killing of schistosomula by complement plus neutrophils. 2. Smpi56-A 56kDa serine protease inhibitor. Smpi56 binds covalently to m28 and to neutrophil's elastase and blocks their proteolytic activity. 3. P70-A 70kDa C3b binding protein. The postulated activity of P70 includes binding to C3b and blocking of complement activation of the C3 step. 4. SCIP-1-A 94kDa schistosome complement inhibitor. SCIP-1 shows antigenic and functional similarities to the human 18kDa complement inhibitor CD59. Like CD59, SCIP-1 binds to C8 and C9 and blocks formation of the complement membrane attack complex. Antibodies directed to human CD59 bind to schistosomula and potentiate their killing by complement. The structure and function of these four proteins as well as their capacity to induce protection from infection with S. mansoni are under investigation.
Resumo:
PURPOSE: Tumor-associated TIE-2-expressing monocytes (TEM) are highly proangiogenic cells critical for tumor vascularization. We previously showed that, in human breast cancer, TIE-2 and VEGFR pathways control proangiogenic activity of TEMs. Here, we examine the contribution of these pathways to immunosuppressive activity of TEMs. EXPERIMENTAL DESIGN: We investigated the changes in immunosuppressive activity of TEMs and gene expression in response to specific kinase inhibitors of TIE-2 and VEGFR. The ability of tumor TEMs to suppress tumor-specific T-cell response mediated by tumor dendritic cells (DC) was measured in vitro. Characterization of TEM and DC phenotype in addition to their interaction with T cells was done using confocal microscopic images analysis of breast carcinomas. RESULTS: TEMs from breast tumors are able to suppress tumor-specific immune responses. Importantly, proangiogenic and suppressive functions of TEMs are similarly driven by TIE-2 and VEGFR kinase activity. Furthermore, we show that tumor TEMs can function as antigen-presenting cells and elicit a weak proliferation of T cells. Blocking TIE-2 and VEGFR kinase activity induced TEMs to change their phenotype into cells with features of myeloid dendritic cells. We show that immunosuppressive activity of TEMs is associated with high CD86 surface expression and extensive engagement of T regulatory cells in breast tumors. TIE-2 and VEGFR kinase activity was also necessary to maintain high CD86 surface expression levels and to convert T cells into regulatory cells. CONCLUSIONS: These results suggest that TEMs are plastic cells that can be reverted from suppressive, proangiogenic cells into cells that are able to mediate an antitumoral immune response. Clin Cancer Res; 19(13); 3439-49. ©2013 AACR.
Resumo:
Discs of polyvinyl alcohol cross-linked with glutaraldehyde were synthesized under acid catalysis (H2SO4). Then, the antigen F1 purified from Yersinia pestis was covalently linked to this modified polymer. Afterwards, an enzyme-linked immunosorbent assay (ELISA) was established for the diagnosis of plague in rabbit and human. The best conditions for the method were achieved by using 1.3 ¼g of F1 prepared in 0.067 M phosphate buffer, pH 7.2, containing 1 M NaCl (PBS); anti-IgG peroxidase conjugate diluted 6,000 times and as a blocking agent 3% w/v skim milk in PBS. The titration of positive rabbit serum according to this procedure detected antibody concentrations up to 1:12,800 times. The present method, the conventional ELISA and passive haemagglutination assay are compared.
Resumo:
Vaccines could be a crucial component of efforts to eradicate malaria. Current attempts to develop malaria vaccines are primarily focused on Plasmodium falciparum and are directed towards reducing morbidity and mortality. Continued support for these efforts is essential, but if malaria vaccines are to be used as part of a repertoire of tools for elimination or eradication of malaria, they will need to have an impact on malaria transmission. We introduce the concept of "vaccines that interrupt malaria transmission" (VIMT), which includes not only "classical" transmission-blocking vaccines that target the sexual and mosquito stages but also pre-erythrocytic and asexual stage vaccines that have an effect on transmission. VIMT may also include vaccines that target the vector to disrupt parasite development in the mosquito. Importantly, if eradication is to be achieved, malaria vaccine development efforts will need to target other malaria parasite species, especially Plasmodium vivax, where novel therapeutic vaccines against hypnozoites or preventive vaccines with effect against multiple stages could have enormous impact. A target product profile (TPP) for VIMT is proposed and a research agenda to address current knowledge gaps and develop tools necessary for design and development of VIMT is presented.
Resumo:
Brain invasion is a biological hallmark of glioma that contributes to its aggressiveness and limits the potential of surgery and irradiation. Deregulated expression of adhesion molecules on glioma cells is thought to contribute to this process. Junctional adhesion molecules (JAMs) include several IgSF members involved in leukocyte trafficking, angiogenesis, and cell polarity. They are expressed mainly by endothelial cells, white blood cells, and platelets. Here, we report JAM-C expression by human gliomas, but not by their normal cellular counterpart. This expression correlates with the expression of genes involved in cytoskeleton remodeling and cell migration. These genes, identified by a transcriptomic approach, include poliovirus receptor and cystein-rich 61, both known to promote glioma invasion, as well as actin filament associated protein, a c-Src binding partner. Gliomas also aberrantly express JAM-B, a high affinity JAM-C ligand. Their interaction activates the c-Src proto-oncogene, a central upstream molecule in the pathways regulating cell migration and invasion. In the tumor microenvironment, this co-expression may thus promote glioma invasion through paracrine stimuli from both tumor cells and endothelial cells. Accordingly, JAM-C/B blocking antibodies impair in vivo glioma growth and invasion, highlighting the potential of JAM-C and JAM-B as new targets for the treatment of human gliomas.
Resumo:
Eosinophils, along with mast cells are key cells involved in the innate immune response against parasitic infection whereas the adaptive immune response is largely dependent on lymphocytes. In chronic parasitic disease and in chronic allergic disease, IL-5 is predominantly a T cell derived cytokine which is particularly important for the terminal differentiation, activation and survival of committed eosinophil precursors. The human IL-5 gene is located on chromosome 5 in a gene cluster that contains the evolutionary related IL-4 family of cytokine genes. The human IL-5 receptor complex is a heterodimer consisting of a unique a subunit (predominantly expressed on eosinophils) and a beta subunit which is shared between the receptors for IL-3 & GM-CSF (more widely expressed). The a subunit is required for ligand-specific binding whereas association with the beta subunit results in increased binding affinity. The alternative splicing of the alphaIL-5R gene which contains 14 exons can yield several alphaIL-5R isoforms including a membrane-anchored isoform (alphaIL-5Rm) and a soluble isoform (alphaIL-5Rs). Cytokines such as IL-5 produce specific and non-specific cellular responses through specific cell membrane receptor mediated activation of intracellular signal transduction pathways which, to a large part, regulate gene expression. The major intracellular signal transduction mechanism is activation of non-receptor associated tyrosine kinases including JAK and MAP kinases which can then transduce signals via a novel family of transcriptional factors named signal transducers and activators of transcription (STATS). JAK2, STAT1 and STAT 5 appear to be particularly important in IL-5 mediated eosinophil responses. Asthma is characterized by episodic airways obstruction, increased bronchial responsiveness, and airway inflammation. Several studies have shown an association between the number of activated T cells and eosinophils in the airways and abnormalities in FEV1, airway reactivity and clinical severity in asthma. It has now been well documented that IL-5 is highly expressed in the bronchial mucosa of atopic and intrinsic asthmatics and that the increased IL-5 mRNA present in airway tissues is predominantly T cell derived. Immunocytochemical staining of bronchial biopsy sections has confirmed that IL-5 mRNA transcripts are translated into protein in asthmatic subjects. Furthermore, the number of activated CD 4 + T cells and IL-5 mRNA positive cells are increased in asthmatic airways following antigen challenge and studies that have examined IL-5 expression in asthmatic subjects before and after steroids have shown significantly decreased expression following oral corticosteroid treatment in steroid-sensitive asthma but not in steroid resistant and chronic severe steroid dependent asthma. The link between T cell derived IL-5 and eosinophil activation in asthmatic airways is further strengthened by the demonstration that there is an increased number of alphaIL-5R mRNA positive cells in the bronchial biopsies of atopic and non-atopic asthmatic subjects and that the eosinophil is the predominant site of this increased alphaIL-5R mRNA expression. We have also shown that the subset of activated eosinophils that expressed mRNA for membrane bound alpha IL5r inversely correlated with FEV1, whereas the subset of activated eosinophils that expressed mRNA for soluble alphaIL5r directly correlated with FEV1. Hence, not only does this data suggest that the presence of eosinophils expressing alphaIL-5R mRNA contribute towards the pathogenesis of bronchial asthma, but also that the eosinophil phenotype with respect to alphaIL-5R isoform expression is of central importance. Finally, there are several animal, and more recently in vitro lung explant, models of allergen induced eosinophilia, late airway responses(LARS), and bronchial hyperresponsiveness(BHR) - all of which support a link between IL-5 and airway eosinophila and bronchial hyperresponsiveness. The most direct demonstration of T cell involvement in LARS is the finding that these physiological responses can be transferred by CD4+ but not CD8+ T cells in rats. The importance of IL-5 in animal models of allergen induced bronchial hyperresponsiveness has been further demonstrated by a number of studies which have indicated that IL-5 administration is able to induce late phase responses and BHR and that anti-IL-5 antibody can block allergen induced late phase responses and BHR. In summary, activated T lymphocytes, IL5 production and eosinophil activation are particularly important in the asthmatic response. Human studies in asthma and studies in allergic animal models have clearly emphasised the unique role of IL-5 in linking T lymphocytes and adaptive immunity, the eosinophil effector cell, and the asthma phenotype. The central role of activated lymphocytes and eosinophils in asthma would argue for the likely therapeutic success of strategies to block T cell and eosinophil activation (eg steroids). Importantly, more targeted therapies may avoid the complications associated with steroids. Such therapies could target key T cell activation proteins and cytokines by various means including blocking antibodies (eg anti-CD4, anti-CD40, anti-IL-5 etc), antisense oligonucleotides to their specific mRNAs, and/or selective inhibition of the promoter sites for these genes. Another option would be to target key eosinophil activation mechanisms including the aIL5r. As always, the risk to benefit ratio of such strategies await the results of well conducted clinical trials.
Resumo:
Management of chronic pain is a real challenge, and current treatments focusing on blocking neurotransmission in the pain pathway have only resulted in limited success. Activation of glia cells has been widely implicated in neuroinflammation in the central nervous system, leading to neruodegeneration in many disease conditions such as Alzheimer's and multiple sclerosis. The inflammatory mediators released by activated glial cells, such as tumor necrosis factor-α and interleukin-1β can not only cause neurodegeneration in these disease conditions, but also cause abnormal pain by acting on spinal cord dorsal horn neurons in injury conditions. Pain can also be potentiated by growth factors such as BDNF and bFGF that are produced by glia to protect neurons. Thus, glia cells can powerfully control pain when they are activated to produce various pain mediators. We will review accumulating evidence supporting an important role of microglia cells in the spinal cord for pain control under injury conditions (e.g. nerve injury). We will also discuss possible signaling mechanisms in particular MAP kinase pathways that are critical for glia control of pain. Investigating signaling mechanisms in microglia may lead to more effective management of devastating chronic pain.
Resumo:
ABSTRACT : The retina is one of the most important human sensory tissues since it detects and transmits all visual information from the outside world to the brain. Retinitis pigmentosa (RP) is the name given to a group of inherited diseases that affect specifically the photoreceptors present in the retina and in many instances lead to blindness. Dominant mutations in PRPF31, a gene that encodes for a pre-mRNA splicing factor, cause retinitis pigmentosa with reduced penetrance. We functionally investigated a novel mutation, identified in a large family with autosomal dominant RP, and 7 other mutations, substitutions and microdeletions, in 12 patients from 7 families with PRPF31-linked RP. Seven mutations lead to PRPF31 mRNA with premature stop codons and one to mRNA lacking the exon containing the initiation codon. Quantification of PRPF31 mRNA and protein levels revealed a significant reduction in cell lines derived from patients, compared to non carriers of mutations in PRPF31. Allelic quantification of PRPF31 mRNA indicated that the level of mutated mRNA is very low compared to wild-type mRNA. No mutant protein was detected and the subnuclear localization of wild-type PRPF31 remains the same in cell lines from patients and controls. Blocking nonsense-mediated mRNA decay in cell lines derived from patients partially restored PRPF31 mutated mRNA but derived proteins were still undetectable, even when protein degradation pathways were inhibited. Our results demonstrated that the vast majority of PRPF31 mutations result in null alleles, since they are subject to surveillance mechanisms that degrade mutated mRNA and possibly block its translation. Altogether, these data indicate that the likely cause of PRPF31-linked RP is haploinsufficiency, rather than a dominant negative effect. Penetrance of PRPF31 mutations has been previously demonstrated to be inversely correlated with the level of PRPF31 mRNA, since high expression of wild-type PRPF31 mRNA protects from the disease. Consequently, we have investigated the genetic modifiers that control the expression of PRPF31 by quantifying PRPF31 mRNA levels in cell lines derived from 200 individuals from 15 families representative of the general population. By linkage analyses we identified a 8.2Mb-region on chromosome 14q21-23 that contains a gene involved in the modulation of PRPF31 expression. We also assessed apreviously-mapped penetrance factor invariably located on the wild-type allele and linked to the PRPF31 locus in asymptomatic patients from different families with RP. We demonstrated that this modifier increases the expression of both PRPF31 alleles already at the pre-mRNA level. Finally, our data suggest that PRPF31 mRNA expression and consequently the penetrance of PRPF31 mutations is modulated by at least 2 diffusible compounds, which act on both PRPF31 alleles during their transcription.
Resumo:
OBJECTIVES: We have reported previously that 80 mg valsartan and 50 mg losartan provide less receptor blockade than 150 mg irbesartan in normotensive subjects. In this study we investigated the importance of drug dosing in mediating these differences by comparing the AT(1)-receptor blockade induced by 3 doses of valsartan with that obtained with 3 other antagonists at given doses. METHODS: Valsartan (80, 160, and 320 mg), 50 mg losartan, 150 mg irbesartan, and 8 mg candesartan were administered to 24 healthy subjects in a randomized, open-label, 3-period crossover study. All doses were given once daily for 8 days. The angiotensin II receptor blockade was assessed with two techniques, the reactive rise in plasma renin activity and an in vitro radioreceptor binding assay that quantified the displacement of angiotensin II by the blocking agents. Measurements were obtained before and 4 and 24 hours after drug intake on days 1 and 8. RESULTS: At 4 and 24 hours, valsartan induced a dose-dependent "blockade" of AT(1) receptors. Compared with other antagonists, 80 mg valsartan and 50 mg losartan had a comparable profile. The 160-mg and 320-mg doses of valsartan blocked AT(1) receptors at 4 hours by 80%, which was similar to the effect of 150 mg irbesartan. At trough, however, the valsartan-induced blockade was slightly less than that obtained with irbesartan. With use of plasma renin activity as a marker of receptor blockade, on day 8, 160 mg valsartan was equivalent to 150 mg irbesartan and 8 mg candesartan. CONCLUSIONS: These results show that the differences in angiotensin II receptor blockade observed with the various AT(1) antagonists are explained mainly by differences in dosing. When 160-mg or 320-mg doses were investigated, the effects of valsartan hardly differed from those obtained with recommended doses of irbesartan and candesartan.
Resumo:
Introduction: Rotenone is a botanical pesticide derived from extracts of Derris roots, which is traditionally used as piscicide, but also as an industrial insecticide for home gardens. Its mechanism of action is potent inhibition of mitochondrial respiratory chain by uncoupling oxidative phosphorylation by blocking electron transport at complex-I. Despite its classification as mild to moderately toxic to humans (estimated LD50, 300-500 mg/kg), there is a striking variety of acute toxicity of rotenone depending on the formulation (solvents). Human fatalities with rotenone-containing insecticides have been rarely reported, and a rapid deterioration within a few hours of the ingestion has been described previously in one case. Case report: A 49-year-old Tamil man with a history of asthma, ingested 250 mL of an insecticide containing 1.24% of rotenone (3.125 g, 52.1-62.5 mg/kg) in a suicide attempt at home. The product was not labeled as toxic. One hour later, he vomited repeatedly and emergency services were alerted. He was found unconscious with irregular respiration and was intubated. On arrival at the emergency department, he was comatose (GCS 3) with fixed and dilated pupils, and absent corneal reflexes. Physical examination revealed hemodynamic instability with hypotension (55/30 mmHg) and bradycardia (52 bpm). Significant laboratory findings were lactic acidosis (pH 6.97, lactate 17 mmol/L) and hypokalemia (2 mmol/L). Cranial computed tomography (CT) showed early cerebral edema. A single dose of activated charcoal was given. Intravenous hydration, ephedrine, repeated boli of dobutamine, and a perfusor with 90 micrograms/h norepinephine stabilized blood pressure temporarily. Atropine had a minimal effect on heart rate (58 bpm). Intravenous lipid emulsion was considered (log Pow 4.1), but there was a rapid deterioration with refractory hypotension and acute circulatory failure. The patient died 5h after ingestion of the insecticide. No autopsy was performed. Quantitative analysis of serum performed by high-resolution/accurate mass-mass spectrometry and liquid chromatography (LC-HR/AM-MS): 560 ng/mL rotenone. Other substances were excluded by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS/MS). Conclusion: The clinical course was characterized by early severe symptoms and a rapidly fatal evolution, compatible with inhibition of mitochondrial energy supply. Although rotenone is classified as mild to moderately toxic, physicians must be aware that suicidal ingestion of emulsified concentrates may be rapidly fatal. (n=3): stridor, cyanosis, cough (one each). Local swelling after chewing or swallowing soap developed at the earliest after 20 minutes and persisted beyond 24 hours in some cases. Treatment with antihistamines and/or steroids relieved the symptoms in 9 cases. Conclusion: Bar soap ingestion by seniors carries a risk of severe local reactions. Half the patients developed symptoms, predominantly swellings of tongue and/or lips (38%). Cognitive impairment, particularly in the cases of dementia (37%), may increase the risk of unintentional ingestion. Chewing and intraoral retention of soap leads to prolonged contact with the mucosal membranes. Age-associated physiological changes of oral mucosa probably promote the irritant effects of the surfactants. Medical treatment with antihistamines and corticosteroids usually leads to rapid decline of symptoms. Without treatment, there may be a risk of airway obstruction.
Resumo:
Mouse mammary tumor virus (MMTV) infection establishes chronic germinal centers and a lifelong neutralizing Ab response. We show that removal of the draining lymph node after establishment of the germinal center reaction led to complete loss of neutralizing Abs despite comparable infection levels in peripheral lymphocytes. Importantly, in the absence of neutralization, only the exocrine organs mammary gland, salivary gland, pancreas, and skin showed strikingly increased infection, resulting in accelerated mammary tumor development. Induction of stronger neutralization did not influence chronic infection levels of peripheral lymphoid organs but strongly inhibited mammary gland infection and virus transmission to the next generation. Taken together, we provide evidence that a tight equilibrium in virus neutralization allows limited infection of exocrine organs and controls cancer development in susceptible mouse strains. These experiments show that a strong neutralizing Ab response induced after infection is not able to control lymphoid MMTV infection. Strong neutralization, however, is capable of blocking amplification of mammary gland infection, tumor development, and virus transmission to the next generation. The results also indicate a role of neutralization in natural resistance to MMTV infection.
Resumo:
Triggering receptor expressed on myeloid cells-1 (TREM-1) is a potent amplifier of pro-inflammatory innate immune reactions. While TREM-1-amplified responses likely aid an improved detection and elimination of pathogens, excessive production of cytokines and oxygen radicals can also severely harm the host. Studies addressing the pathogenic role of TREM-1 during endotoxin-induced shock or microbial sepsis have so far mostly relied on the administration of TREM-1 fusion proteins or peptides representing part of the extracellular domain of TREM-1. However, binding of these agents to the yet unidentified TREM-1 ligand could also impact signaling through alternative receptors. More importantly, controversial results have been obtained regarding the requirement of TREM-1 for microbial control. To unambiguously investigate the role of TREM-1 in homeostasis and disease, we have generated mice deficient in Trem1. Trem1(-/-) mice are viable, fertile and show no altered hematopoietic compartment. In CD4(+) T cell- and dextran sodium sulfate-induced models of colitis, Trem1(-/-) mice displayed significantly attenuated disease that was associated with reduced inflammatory infiltrates and diminished expression of pro-inflammatory cytokines. Trem1(-/-) mice also exhibited reduced neutrophilic infiltration and decreased lesion size upon infection with Leishmania major. Furthermore, reduced morbidity was observed for influenza virus-infected Trem1(-/-) mice. Importantly, while immune-associated pathologies were significantly reduced, Trem1(-/-) mice were equally capable of controlling infections with L. major, influenza virus, but also Legionella pneumophila as Trem1(+/+) controls. Our results not only demonstrate an unanticipated pathogenic impact of TREM-1 during a viral and parasitic infection, but also indicate that therapeutic blocking of TREM-1 in distinct inflammatory disorders holds considerable promise by blunting excessive inflammation while preserving the capacity for microbial control.
Resumo:
Retroelements are important evolutionary forces but can be deleterious if left uncontrolled. Members of the human APOBEC3 family of cytidine deaminases can inhibit a wide range of endogenous, as well as exogenous, retroelements. These enzymes are structurally organized in one or two domains comprising a zinc-coordinating motif. APOBEC3G contains two such domains, only the C terminal of which is endowed with editing activity, while its N-terminal counterpart binds RNA, promotes homo-oligomerization, and is necessary for packaging into human immunodeficiency virus type 1 (HIV-1) virions. Here, we performed a large-scale mutagenesis-based analysis of the APOBEC3G N terminus, testing mutants for (i) inhibition of vif-defective HIV-1 infection and Alu retrotransposition, (ii) RNA binding, and (iii) oligomerization. Furthermore, in the absence of structural information on this domain, we used homology modeling to examine the positions of functionally important residues and of residues found to be under positive selection by phylogenetic analyses of primate APOBEC3G genes. Our results reveal the importance of a predicted RNA binding dimerization interface both for packaging into HIV-1 virions and inhibition of both HIV-1 infection and Alu transposition. We further found that the HIV-1-blocking activity of APOBEC3G N-terminal mutants defective for packaging can be almost entirely rescued if their virion incorporation is forced by fusion with Vpr, indicating that the corresponding region of APOBEC3G plays little role in other aspects of its action against this pathogen. Interestingly, residues forming the APOBEC3G dimer interface are highly conserved, contrasting with the rapid evolution of two neighboring surface-exposed amino acid patches, one targeted by the Vif protein of primate lentiviruses and the other of yet-undefined function.
Resumo:
OBJECTIVES: The pre-treatment of tumour neovessels by low-level photodynamic therapy (PDT) improves the distribution of concomitantly administered systemic chemotherapy. The mechanism by which PDT permeabilizes the tumour vessel wall is only partially known. We have recently shown that leukocyte-endothelial cell interaction is essential for photodynamic drug delivery to normal tissue. The present study investigates whether PDT enhances drug delivery in malignant mesothelioma and whether it involves comparable mechanisms of actions. METHODS: Human mesothelioma xenografts (H-meso-1) were grown in the dorsal skinfold chambers of 28 nude mice. By intravital microscopy, the rolling and recruitment of leukocytes were assessed in tumour vessels following PDT (Visudyne(®) 400 μg/kg, fluence rate 200 mW/cm(2) and fluence 60 J/cm(2)) using intravital microscopy. Likewise, the distribution of fluorescently labelled macromolecular dextran (FITC-dextran, MW 2000 kDa) was determined after PDT. Study groups included no PDT, PDT, PDT plus a functionally blocking anti-pan-selectin antibody cocktail and PDT plus isotype control antibody. RESULTS: PDT significantly enhanced the extravascular accumulation of FITC-dextran in mesothelioma xenografts, but not in normal tissue. PDT significantly increased leukocyte-endothelial cell interaction in tumour. While PDT-induced leukocyte recruitment was significantly blunted by the anti-pan-selectin antibodies in the tumour xenograft, this manipulation did not affect the PDT-induced extravasation of FITC-dextran. CONCLUSIONS: Low-level PDT pre-treatment selectively enhances the uptake of systemically circulating macromolecular drugs in malignant mesothelioma, but not in normal tissue. Leukocyte-endothelial cell interaction is not required for PDT-induced drug delivery to malignant mesothelioma.
Resumo:
Bisphosphonate related osteonecrosis of the jaw (BRONJ) is defined as exposed necrotic bone appearing in the jaws of patients treated by systemic IV or oral BPs never irradiated in the head and neck area and that has persisted for more than 8 weeks. More than 90% of cases of osteonecrosis of the jaw have been in patients with cancer who received IV-BPs. The estimate of cumulative incidence of BRONJ in cancer patients with IV-BPs ranges from 0.8% to 18.6%. The pathogenesis of BRONJ appeared related to the potent osteoblast-inhibiting properties of BPs which act by blocking osteoclast recruitment, decreasing osteoclast activity and promoting osteoclast apoptosis. Dental extractions are the most potent local risk factor. Cancer patients wearing a denture could also be at increased risk of BRONJ. Non-healing mucosal breaches caused by dentures could be a portal for the oral flora to access bone, while the oral mucosa of patients on IV-BPs could also be defective. Whether periodontal disease is a risk factor for BRONJ remains controversial. Preventive measures are fundamental. Nevertheless, some teams have questioned its cost-effectiveness. The perceived limitations of surgical therapy of BRONJ led to the restriction of aggressive surgery to symptomatic patients with stage 3 BRONJ. The evidence-based literature on BRONJ is growing but there are still many controversial aspects.