919 resultados para Optical pattern recognition Data processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractal theory presents a large number of applications to image and signal analysis. Although the fractal dimension can be used as an image object descriptor, a multiscale approach, such as multiscale fractal dimension (MFD), increases the amount of information extracted from an object. MFD provides a curve which describes object complexity along the scale. However, this curve presents much redundant information, which could be discarded without loss in performance. Thus, it is necessary the use of a descriptor technique to analyze this curve and also to reduce the dimensionality of these data by selecting its meaningful descriptors. This paper shows a comparative study among different techniques for MFD descriptors generation. It compares the use of well-known and state-of-the-art descriptors, such as Fourier, Wavelet, Polynomial Approximation (PA), Functional Data Analysis (FDA), Principal Component Analysis (PCA), Symbolic Aggregate Approximation (SAX), kernel PCA, Independent Component Analysis (ICA), geometrical and statistical features. The descriptors are evaluated in a classification experiment using Linear Discriminant Analysis over the descriptors computed from MFD curves from two data sets: generic shapes and rotated fish contours. Results indicate that PCA, FDA, PA and Wavelet Approximation provide the best MFD descriptors for recognition and classification tasks. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The measurement of mesozooplankton biomass in the ocean requires the use of analytical procedures that destroy the samples. Alternatively, the development of methods to estimate biomass from optical systems and appropriate conversion factors could be a compromise between the accuracy of analytical methods and the need to preserve the samples for further taxonomic studies. The conversion of the body area recorded by an optical counter or a camera, by converting the digitized area of an organism into individual biomass, was suggested as a suitable method to estimate total biomass. In this study, crustacean mesozooplankton from subtropical waters were analyzed, and individual dry weight and body area were compared. The obtained relationships agreed with other measurements of biomass obtained from a previous study in Antarctic waters. Gelatinous mesozooplankton from subtropical and Antarctic waters were also sampled and processed for body area and biomass. As expected, differences between crustacean and gelatinous plankton were highly significant. Transparent gelatinous organisms have a lower dry weight per unit area. Therefore, to estimate biomass from digitized images, pattern recognition discerning, at least, between crustaceans and gelatinous forms is required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]An accurate estimation of the number of people entering / leaving a controlled area is an interesting capability for automatic surveil- lance systems. Potential applications where this technology can be ap- plied include those related to security, safety, energy saving or fraud control. In this paper we present a novel con guration of a multi-sensor system combining both visual and range data specially suited for trou- blesome scenarios such as public transportation. The approach applies probabilistic estimation lters on raw sensor data to create intermediate level hypothesis that are later fused using a certainty-based integration stage. Promising results have been obtained in several tests performed on a realistic test bed scenario under variable lightning conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Facial expression recognition is one of the most challenging research areas in the image recognition ¯eld and has been actively studied since the 70's. For instance, smile recognition has been studied due to the fact that it is considered an important facial expression in human communication, it is therefore likely useful for human–machine interaction. Moreover, if a smile can be detected and also its intensity estimated, it will raise the possibility of new applications in the future

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The term Ambient Intelligence (AmI) refers to a vision on the future of the information society where smart, electronic environment are sensitive and responsive to the presence of people and their activities (Context awareness). In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices. This promotes the creation of pervasive environments improving the quality of life of the occupants and enhancing the human experience. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. Ambient intelligent systems are heterogeneous and require an excellent cooperation between several hardware/software technologies and disciplines, including signal processing, networking and protocols, embedded systems, information management, and distributed algorithms. Since a large amount of fixed and mobile sensors embedded is deployed into the environment, the Wireless Sensor Networks is one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes which can be deployed in a target area to sense physical phenomena and communicate with other nodes and base stations. These simple devices typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). WNS promises of revolutionizing the interactions between the real physical worlds and human beings. Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. To fully exploit the potential of distributed sensing approaches, a set of challengesmust be addressed. Sensor nodes are inherently resource-constrained systems with very low power consumption and small size requirements which enables than to reduce the interference on the physical phenomena sensed and to allow easy and low-cost deployment. They have limited processing speed,storage capacity and communication bandwidth that must be efficiently used to increase the degree of local ”understanding” of the observed phenomena. A particular case of sensor nodes are video sensors. This topic holds strong interest for a wide range of contexts such as military, security, robotics and most recently consumer applications. Vision sensors are extremely effective for medium to long-range sensing because vision provides rich information to human operators. However, image sensors generate a huge amount of data, whichmust be heavily processed before it is transmitted due to the scarce bandwidth capability of radio interfaces. In particular, in video-surveillance, it has been shown that source-side compression is mandatory due to limited bandwidth and delay constraints. Moreover, there is an ample opportunity for performing higher-level processing functions, such as object recognition that has the potential to drastically reduce the required bandwidth (e.g. by transmitting compressed images only when something ‘interesting‘ is detected). The energy cost of image processing must however be carefully minimized. Imaging could play and plays an important role in sensing devices for ambient intelligence. Computer vision can for instance be used for recognising persons and objects and recognising behaviour such as illness and rioting. Having a wireless camera as a camera mote opens the way for distributed scene analysis. More eyes see more than one and a camera system that can observe a scene from multiple directions would be able to overcome occlusion problems and could describe objects in their true 3D appearance. In real-time, these approaches are a recently opened field of research. In this thesis we pay attention to the realities of hardware/software technologies and the design needed to realize systems for distributed monitoring, attempting to propose solutions on open issues and filling the gap between AmI scenarios and hardware reality. The physical implementation of an individual wireless node is constrained by three important metrics which are outlined below. Despite that the design of the sensor network and its sensor nodes is strictly application dependent, a number of constraints should almost always be considered. Among them: • Small form factor to reduce nodes intrusiveness. • Low power consumption to reduce battery size and to extend nodes lifetime. • Low cost for a widespread diffusion. These limitations typically result in the adoption of low power, low cost devices such as low powermicrocontrollers with few kilobytes of RAMand tenth of kilobytes of program memory with whomonly simple data processing algorithms can be implemented. However the overall computational power of the WNS can be very large since the network presents a high degree of parallelism that can be exploited through the adoption of ad-hoc techniques. Furthermore through the fusion of information from the dense mesh of sensors even complex phenomena can be monitored. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Multimodal Surveillance . Low Power Video Sensor Nodes and Video Processing Alghoritms In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and acceleration sensors, vision sensors generate much higher bandwidth data due to the two-dimensional nature of their pixel array. We have tackled all the constraints listed above and have proposed solutions to overcome the current WSNlimits for Video sensor node. We have designed and developed wireless video sensor nodes focusing on the small size and the flexibility of reuse in different applications. The video nodes target a different design point: the portability (on-board power supply, wireless communication), a scanty power budget (500mW),while still providing a prominent level of intelligence, namely sophisticated classification algorithmand high level of reconfigurability. We developed two different video sensor node: The device architecture of the first one is based on a low-cost low-power FPGA+microcontroller system-on-chip. The second one is based on ARM9 processor. Both systems designed within the above mentioned power envelope could operate in a continuous fashion with Li-Polymer battery pack and solar panel. Novel low power low cost video sensor nodes which, in contrast to sensors that just watch the world, are capable of comprehending the perceived information in order to interpret it locally, are presented. Featuring such intelligence, these nodes would be able to cope with such tasks as recognition of unattended bags in airports, persons carrying potentially dangerous objects, etc.,which normally require a human operator. Vision algorithms for object detection, acquisition like human detection with Support Vector Machine (SVM) classification and abandoned/removed object detection are implemented, described and illustrated on real world data. Multimodal surveillance: In several setup the use of wired video cameras may not be possible. For this reason building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. Energy efficiency for wireless smart camera networks is one of the major efforts in distributed monitoring and surveillance community. For this reason, building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. The Pyroelectric Infra-Red (PIR) sensors have been used to extend the lifetime of a solar-powered video sensor node by providing an energy level dependent trigger to the video camera and the wireless module. Such approach has shown to be able to extend node lifetime and possibly result in continuous operation of the node.Being low-cost, passive (thus low-power) and presenting a limited form factor, PIR sensors are well suited for WSN applications. Moreover techniques to have aggressive power management policies are essential for achieving long-termoperating on standalone distributed cameras needed to improve the power consumption. We have used an adaptive controller like Model Predictive Control (MPC) to help the system to improve the performances outperforming naive power management policies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a non linear technique to invert strong motion records with the aim of obtaining the final slip and rupture velocity distributions on the fault plane. In this thesis, the ground motion simulation is obtained evaluating the representation integral in the frequency. The Green’s tractions are computed using the discrete wave-number integration technique that provides the full wave-field in a 1D layered propagation medium. The representation integral is computed through a finite elements technique, based on a Delaunay’s triangulation on the fault plane. The rupture velocity is defined on a coarser regular grid and rupture times are computed by integration of the eikonal equation. For the inversion, the slip distribution is parameterized by 2D overlapping Gaussian functions, which can easily relate the spectrum of the possible solutions with the minimum resolvable wavelength, related to source-station distribution and data processing. The inverse problem is solved by a two-step procedure aimed at separating the computation of the rupture velocity from the evaluation of the slip distribution, the latter being a linear problem, when the rupture velocity is fixed. The non-linear step is solved by optimization of an L2 misfit function between synthetic and real seismograms, and solution is searched by the use of the Neighbourhood Algorithm. The conjugate gradient method is used to solve the linear step instead. The developed methodology has been applied to the M7.2, Iwate Nairiku Miyagi, Japan, earthquake. The estimated magnitude seismic moment is 2.6326 dyne∙cm that corresponds to a moment magnitude MW 6.9 while the mean the rupture velocity is 2.0 km/s. A large slip patch extends from the hypocenter to the southern shallow part of the fault plane. A second relatively large slip patch is found in the northern shallow part. Finally, we gave a quantitative estimation of errors associates with the parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Gaia space mission is a major project for the European astronomical community. As challenging as it is, the processing and analysis of the huge data-flow incoming from Gaia is the subject of thorough study and preparatory work by the DPAC (Data Processing and Analysis Consortium), in charge of all aspects of the Gaia data reduction. This PhD Thesis was carried out in the framework of the DPAC, within the team based in Bologna. The task of the Bologna team is to define the calibration model and to build a grid of spectro-photometric standard stars (SPSS) suitable for the absolute flux calibration of the Gaia G-band photometry and the BP/RP spectrophotometry. Such a flux calibration can be performed by repeatedly observing each SPSS during the life-time of the Gaia mission and by comparing the observed Gaia spectra to the spectra obtained by our ground-based observations. Due to both the different observing sites involved and the huge amount of frames expected (≃100000), it is essential to maintain the maximum homogeneity in data quality, acquisition and treatment, and a particular care has to be used to test the capabilities of each telescope/instrument combination (through the “instrument familiarization plan”), to devise methods to keep under control, and eventually to correct for, the typical instrumental effects that can affect the high precision required for the Gaia SPSS grid (a few % with respect to Vega). I contributed to the ground-based survey of Gaia SPSS in many respects: with the observations, the instrument familiarization plan, the data reduction and analysis activities (both photometry and spectroscopy), and to the maintenance of the data archives. However, the field I was personally responsible for was photometry and in particular relative photometry for the production of short-term light curves. In this context I defined and tested a semi-automated pipeline which allows for the pre-reduction of imaging SPSS data and the production of aperture photometry catalogues ready to be used for further analysis. A series of semi-automated quality control criteria are included in the pipeline at various levels, from pre-reduction, to aperture photometry, to light curves production and analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Aufgabenstellung, welche dieser Dissertation zugrunde liegt, lässt sich kurz als die Untersuchung von komponentenbasierten Konzepten zum Einsatz in der Softwareentwicklung durch Endanwender beschreiben. In den letzten 20 bis 30 Jahren hat sich das technische Umfeld, in dem ein Großteil der Arbeitnehmer seine täglichen Aufgaben verrichtet, grundlegend verändert. Der Computer, früher in Form eines Großrechners ausschließlich die Domäne von Spezialisten, ist nun ein selbstverständlicher Bestandteil der täglichen Arbeit. Der Umgang mit Anwendungsprogrammen, die dem Nutzer erlauben in einem gewissen Rahmen neue, eigene Funktionalität zu definieren, ist in vielen Bereichen so selbstverständlich, dass viele dieser Tätigkeiten nicht bewusst als Programmieren wahrgenommen werden. Da diese Nutzer nicht notwendigerweise in der Entwicklung von Software ausgebildet sind, benötigen sie entsprechende Unterstützung bei diesen Tätigkeiten. Dies macht deutlich, welche praktische Relevanz die Untersuchungen in diesem Bereich haben. Zur Erstellung eines Programmiersystems für Endanwender wird zunächst ein flexibler Anwendungsrahmen entwickelt, welcher sich als Basis zur Erstellung solcher Systeme eignet. In Softwareprojekten sind sich ändernde Anforderungen und daraus resultierende Notwendigkeiten ein wichtiger Aspekt. Dies wird im Entwurf des Frameworks durch Konzepte zur Bereitstellung von wieder verwendbarer Funktionalität durch das Framework und Möglichkeiten zur Anpassung und Erweiterung der vorhandenen Funktionalität berücksichtigt. Hier ist zum einen der Einsatz einer serviceorientierten Architektur innerhalb der Anwendung und zum anderen eine komponentenorientierte Variante des Kommando-Musters zu nennen. Zum anderen wird ein Konzept zur Kapselung von Endnutzerprogrammiermodellen in Komponenten erarbeitet. Dieser Ansatz ermöglicht es, unterschiedliche Modelle als Grundlage der entworfenen Entwicklungsumgebung zu verwenden. Im weiteren Verlauf der Arbeit wird ein Programmiermodell entworfen und unter Verwendung des zuvor genannten Frameworks implementiert. Damit dieses zur Nutzung durch Endanwender geeignet ist, ist eine Anhebung der zur Beschreibung eines Softwaresystems verwendeten Abstraktionsebene notwendig. Dies wird durch die Verwendung von Komponenten und einem nachrichtenbasierten Kompositionsmechanismus erreicht. Die vorgenommene Realisierung ist dabei noch nicht auf konkrete Anwendungsfamilien bezogen, diese Anpassungen erfolgen in einem weiteren Schritt für zwei unterschiedliche Anwendungsbereiche.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il termine cloud ha origine dal mondo delle telecomunicazioni quando i provider iniziarono ad utilizzare servizi basati su reti virtuali private (VPN) per la comunicazione dei dati. Il cloud computing ha a che fare con la computazione, il software, l’accesso ai dati e servizi di memorizzazione in modo tale che l’utente finale non abbia idea della posizione fisica dei dati e la configurazione del sistema in cui risiedono. Il cloud computing è un recente trend nel mondo IT che muove la computazione e i dati lontano dai desktop e dai pc portatili portandoli in larghi data centers. La definizione di cloud computing data dal NIST dice che il cloud computing è un modello che permette accesso di rete on-demand a un pool condiviso di risorse computazionali che può essere rapidamente utilizzato e rilasciato con sforzo di gestione ed interazione con il provider del servizio minimi. Con la proliferazione a larga scala di Internet nel mondo le applicazioni ora possono essere distribuite come servizi tramite Internet; come risultato, i costi complessivi di questi servizi vengono abbattuti. L’obbiettivo principale del cloud computing è utilizzare meglio risorse distribuite, combinarle assieme per raggiungere un throughput più elevato e risolvere problemi di computazione su larga scala. Le aziende che si appoggiano ai servizi cloud risparmiano su costi di infrastruttura e mantenimento di risorse computazionali poichè trasferiscono questo aspetto al provider; in questo modo le aziende si possono occupare esclusivamente del business di loro interesse. Mano a mano che il cloud computing diventa più popolare, vengono esposte preoccupazioni riguardo i problemi di sicurezza introdotti con l’utilizzo di questo nuovo modello. Le caratteristiche di questo nuovo modello di deployment differiscono ampiamente da quelle delle architetture tradizionali, e i meccanismi di sicurezza tradizionali risultano inefficienti o inutili. Il cloud computing offre molti benefici ma è anche più vulnerabile a minacce. Ci sono molte sfide e rischi nel cloud computing che aumentano la minaccia della compromissione dei dati. Queste preoccupazioni rendono le aziende restie dall’adoperare soluzioni di cloud computing, rallentandone la diffusione. Negli anni recenti molti sforzi sono andati nella ricerca sulla sicurezza degli ambienti cloud, sulla classificazione delle minacce e sull’analisi di rischio; purtroppo i problemi del cloud sono di vario livello e non esiste una soluzione univoca. Dopo aver presentato una breve introduzione sul cloud computing in generale, l’obiettivo di questo elaborato è quello di fornire una panoramica sulle vulnerabilità principali del modello cloud in base alle sue caratteristiche, per poi effettuare una analisi di rischio dal punto di vista del cliente riguardo l’utilizzo del cloud. In questo modo valutando i rischi e le opportunità un cliente deve decidere se adottare una soluzione di tipo cloud. Alla fine verrà presentato un framework che mira a risolvere un particolare problema, quello del traffico malevolo sulla rete cloud. L’elaborato è strutturato nel modo seguente: nel primo capitolo verrà data una panoramica del cloud computing, evidenziandone caratteristiche, architettura, modelli di servizio, modelli di deployment ed eventuali problemi riguardo il cloud. Nel secondo capitolo verrà data una introduzione alla sicurezza in ambito informatico per poi passare nello specifico alla sicurezza nel modello di cloud computing. Verranno considerate le vulnerabilità derivanti dalle tecnologie e dalle caratteristiche che enucleano il cloud, per poi passare ad una analisi dei rischi. I rischi sono di diversa natura, da quelli prettamente tecnologici a quelli derivanti da questioni legali o amministrative, fino a quelli non specifici al cloud ma che lo riguardano comunque. Per ogni rischio verranno elencati i beni afflitti in caso di attacco e verrà espresso un livello di rischio che va dal basso fino al molto alto. Ogni rischio dovrà essere messo in conto con le opportunità che l’aspetto da cui quel rischio nasce offre. Nell’ultimo capitolo verrà illustrato un framework per la protezione della rete interna del cloud, installando un Intrusion Detection System con pattern recognition e anomaly detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present PhD thesis was focused on the development and application of chemical methodology (Py-GC-MS) and data-processing method by multivariate data analysis (chemometrics). The chromatographic and mass spectrometric data obtained with this technique are particularly suitable to be interpreted by chemometric methods such as PCA (Principal Component Analysis) as regards data exploration and SIMCA (Soft Independent Models of Class Analogy) for the classification. As a first approach, some issues related to the field of cultural heritage were discussed with a particular attention to the differentiation of binders used in pictorial field. A marker of egg tempera the phosphoric acid esterified, a pyrolysis product of lecithin, was determined using HMDS (hexamethyldisilazane) rather than the TMAH (tetramethylammonium hydroxide) as a derivatizing reagent. The validity of analytical pyrolysis as tool to characterize and classify different types of bacteria was verified. The FAMEs chromatographic profiles represent an important tool for the bacterial identification. Because of the complexity of the chromatograms, it was possible to characterize the bacteria only according to their genus, while the differentiation at the species level has been achieved by means of chemometric analysis. To perform this study, normalized areas peaks relevant to fatty acids were taken into account. Chemometric methods were applied to experimental datasets. The obtained results demonstrate the effectiveness of analytical pyrolysis and chemometric analysis for the rapid characterization of bacterial species. Application to a samples of bacterial (Pseudomonas Mendocina), fungal (Pleorotus ostreatus) and mixed- biofilms was also performed. A comparison with the chromatographic profiles established the possibility to: • Differentiate the bacterial and fungal biofilms according to the (FAMEs) profile. • Characterize the fungal biofilm by means the typical pattern of pyrolytic fragments derived from saccharides present in the cell wall. • Individuate the markers of bacterial and fungal biofilm in the same mixed-biofilm sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in biomedical signal acquisition systems for motion analysis have led to lowcost and ubiquitous wearable sensors which can be used to record movement data in different settings. This implies the potential availability of large amounts of quantitative data. It is then crucial to identify and to extract the information of clinical relevance from the large amount of available data. This quantitative and objective information can be an important aid for clinical decision making. Data mining is the process of discovering such information in databases through data processing, selection of informative data, and identification of relevant patterns. The databases considered in this thesis store motion data from wearable sensors (specifically accelerometers) and clinical information (clinical data, scores, tests). The main goal of this thesis is to develop data mining tools which can provide quantitative information to the clinician in the field of movement disorders. This thesis will focus on motor impairment in Parkinson's disease (PD). Different databases related to Parkinson subjects in different stages of the disease were considered for this thesis. Each database is characterized by the data recorded during a specific motor task performed by different groups of subjects. The data mining techniques that were used in this thesis are feature selection (a technique which was used to find relevant information and to discard useless or redundant data), classification, clustering, and regression. The aims were to identify high risk subjects for PD, characterize the differences between early PD subjects and healthy ones, characterize PD subtypes and automatically assess the severity of symptoms in the home setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents several data processing and compression techniques capable of addressing the strict requirements of wireless sensor networks. After introducing a general overview of sensor networks, the energy problem is introduced, dividing the different energy reduction approaches according to the different subsystem they try to optimize. To manage the complexity brought by these techniques, a quick overview of the most common middlewares for WSNs is given, describing in detail SPINE2, a framework for data processing in the node environment. The focus is then shifted on the in-network aggregation techniques, used to reduce data sent by the network nodes trying to prolong the network lifetime as long as possible. Among the several techniques, the most promising approach is the Compressive Sensing (CS). To investigate this technique, a practical implementation of the algorithm is compared against a simpler aggregation scheme, deriving a mixed algorithm able to successfully reduce the power consumption. The analysis moves from compression implemented on single nodes to CS for signal ensembles, trying to exploit the correlations among sensors and nodes to improve compression and reconstruction quality. The two main techniques for signal ensembles, Distributed CS (DCS) and Kronecker CS (KCS), are introduced and compared against a common set of data gathered by real deployments. The best trade-off between reconstruction quality and power consumption is then investigated. The usage of CS is also addressed when the signal of interest is sampled at a Sub-Nyquist rate, evaluating the reconstruction performance. Finally the group sparsity CS (GS-CS) is compared to another well-known technique for reconstruction of signals from an highly sub-sampled version. These two frameworks are compared again against a real data-set and an insightful analysis of the trade-off between reconstruction quality and lifetime is given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

n the last few years, the vision of our connected and intelligent information society has evolved to embrace novel technological and research trends. The diffusion of ubiquitous mobile connectivity and advanced handheld portable devices, amplified the importance of the Internet as the communication backbone for the fruition of services and data. The diffusion of mobile and pervasive computing devices, featuring advanced sensing technologies and processing capabilities, triggered the adoption of innovative interaction paradigms: touch responsive surfaces, tangible interfaces and gesture or voice recognition are finally entering our homes and workplaces. We are experiencing the proliferation of smart objects and sensor networks, embedded in our daily living and interconnected through the Internet. This ubiquitous network of always available interconnected devices is enabling new applications and services, ranging from enhancements to home and office environments, to remote healthcare assistance and the birth of a smart environment. This work will present some evolutions in the hardware and software development of embedded systems and sensor networks. Different hardware solutions will be introduced, ranging from smart objects for interaction to advanced inertial sensor nodes for motion tracking, focusing on system-level design. They will be accompanied by the study of innovative data processing algorithms developed and optimized to run on-board of the embedded devices. Gesture recognition, orientation estimation and data reconstruction techniques for sensor networks will be introduced and implemented, with the goal to maximize the tradeoff between performance and energy efficiency. Experimental results will provide an evaluation of the accuracy of the presented methods and validate the efficiency of the proposed embedded systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the first part of my thesis I studied the mechanism of initiation of the innate response to HSV-1. Innate immune response is the first line of defense set up by the cell to counteract pathogens infection and it is elicited by the activation of a number of membrane or intracellular receptors and sensors, collectively indicated as PRRs, Patter Recognition Receptors. We reported that the HSV pathogen-associated molecular patterns (PAMP) that activate Toll-like receptor 2 (TLR2) and lead to the initiation of innate response are the virion glycoproteins gH/gL and gB, which constitute the conserved fusion core apparatus across the Herpesvirus. Specifically gH/gL is sufficient to initiate a signaling cascade which leads to NF-κB activation. Then, by gain and loss-of-function approaches, we found that αvβ3-integrin is a sensor of and plays a crucial role in the innate defense against HSV-1. We showed that αvβ3-integrin signals through a pathway that concurs with TLR2, affects activation/induction of interferons type 1, NF-κB, and a polarized set of cytokines and receptors. Thus, we demonstrated that gH/gL is sufficient to induce IFN1 and NF-κB via this pathway. From these data, we proposed that αvβ3-integrin is considered a class of non-TLR pattern recognition receptors. In the second part of my thesis I studied the capacity of human mesenchymal stromal cells isolated by fetal membranes (FM-hMSCs) to be used as carrier cells for the delivery of retargeted R-LM249 virus. The use of systemically administrated carrier cells to deliver oncolytic viruses to tumoral targets is a promising strategy in oncolytic virotherapy. We observed that FM-hMSCs can be infected by R-LM249 and we optimized the infection condition; then we demonstrate that stromal cells sustain the replication of retargeted R-LM249 and spread it to target tumoral cells. From these preliminary data FM-hMSCs resulted suitable to be used as carrier cells