960 resultados para Open-access algorithm
Resumo:
Decades of research has now produced a rich description of the destruction child sexual assault (CSA) can cause in an individual’s life. Post-Traumatic Stress Disorder (PTSD), Dissociative Identity Disorder, Borderline Personality Disorder, depression, anxiety, Panic Disorder, intimacy issues, substance abuse, self-harm, and suicidal ideation and attempts, are some of the negative outcomes that have been attributed to this type of traumatic experience. Psychology's tendency to dwell within a pathological paradigm, along with popular media who espouse a similar rhetoric, would lead to the belief that once exposed to CSA, an individual is forever at the mercy of dealing with a massive array of accompanying negative effects. While the possibility of these outcomes in those who have experienced CSA is not at all denied, it is also timely to consider an alternative paradigm that up until now has received a paucity of attention in the sexual assault literature. That is to say, not only do people have the ability to work through the painful and personal impacts of CSA, but for some people the process of recovery may provide a catalyst for positive life changes that have been termed post-traumatic growth (Tedeschi & Calhoun, 1995). To begin with in this chapter, the negative sequale’ of childhood sexual assault it discussed initially. Inherent to this discussion are questions of measurement and definitions of sexual assault. The chapter highlights ways in which the term CSA has been defined and hence operationalised in research, and the myriad problems, confusions, and inconclusive findings that have plagued the sexual assault literature. Following this is a review of the sparse literature that has conceptualised CSA from a more salutogenic (Antonovsky, 1979) theoretical orientation. It is argued that a salutogenic approach to intervention and to research in this area, provides a more useful way of promoting healing and the gaining of wisdom, but importantly does not negate the very real distress that may accompany growth. This chapter will then present a case study to elucidate the theoretical and empirical literature discussed using the words of a survivor. Finally, the chapter concludes with implications for therapeutic practice, which includes some practical ways in which to promote adaptation to life within the context of having survived this insidious crime.
Resumo:
The measurement of ventilation distribution is currently performed using inhaled tracer gases for multiple breath inhalation studies or imaging techniques to quantify spatial gas distribution. Most tracer gases used for these studies have properties different from that of air. The effect of gas density on regional ventilation distribution has not been studied. This study aimed to measure the effect of gas density on regional ventilation distribution. Methods Ventilation distribution was measured in seven rats using electrical impedance tomography (EIT) in supine, prone, left and right lateral positions while being mechanically ventilated with either air, heliox (30% oxygen, 70% helium) or sulfur hexafluoride (20% SF6, 20% oxygen, 60% air). The effect of gas density on regional ventilation distribution was assessed. Results Gas density did not impact on regional ventilation distribution. The non-dependent lung was better ventilated in all four body positions. Gas density had no further impact on regional filling characteristics. The filling characteristics followed an anatomical pattern with the anterior and left lung showing a greater impedance change during the initial phase of the inspiration. Conclusion It was shown that gas density did not impact on convection dependent ventilation distribution in rats measured with EIT.
Resumo:
Background: Hyperpolarised helium MRI (He3 MRI) is a new technique that enables imaging of the air distribution within the lungs. This allows accurate determination of the ventilation distribution in vivo. The technique has the disadvantages of requiring an expensive helium isotope, complex apparatus and moving the patient to a compatible MRI scanner. Electrical impedance tomography (EIT) a non-invasive bedside technique that allows constant monitoring of lung impedance, which is dependent on changes in air space capacity in the lung. We have used He3MRI measurements of ventilation distribution as the gold standard for assessment of EIT. Methods: Seven rats were ventilated in supine, prone, left and right lateral position with 70% helium/30% oxygen for EIT measurements and pure helium for He3 MRI. The same ventilator and settings were used for both measurements. Image dimensions, geometric centre and global in homogeneity index were calculated. Results: EIT images were smaller and of lower resolution and contained less anatomical detail than those from He3 MRI. However, both methods could measure positional induced changes in lung ventilation, as assessed by the geometric centre. The global in homogeneity index were comparable between the techniques. Conclusion: EIT is a suitable technique for monitoring ventilation distribution and inhomgeneity as assessed by comparison with He3 MRI.
Resumo:
Theoretical foundations of higher order spectral analysis are revisited to examine the use of time-varying bicoherence on non-stationary signals using a classical short-time Fourier approach. A methodology is developed to apply this to evoked EEG responses where a stimulus-locked time reference is available. Short-time windowed ensembles of the response at the same offset from the reference are considered as ergodic cyclostationary processes within a non-stationary random process. Bicoherence can be estimated reliably with known levels at which it is significantly different from zero and can be tracked as a function of offset from the stimulus. When this methodology is applied to multi-channel EEG, it is possible to obtain information about phase synchronization at different regions of the brain as the neural response develops. The methodology is applied to analyze evoked EEG response to flash visual stimulii to the left and right eye separately. The EEG electrode array is segmented based on bicoherence evolution with time using the mean absolute difference as a measure of dissimilarity. Segment maps confirm the importance of the occipital region in visual processing and demonstrate a link between the frontal and occipital regions during the response. Maps are constructed using bicoherence at bifrequencies that include the alpha band frequency of 8Hz as well as 4 and 20Hz. Differences are observed between responses from the left eye and the right eye, and also between subjects. The methodology shows potential as a neurological functional imaging technique that can be further developed for diagnosis and monitoring using scalp EEG which is less invasive and less expensive than magnetic resonance imaging.
Resumo:
Parabolic Trough Concentrators (PTC) are the most proven solar collectors for solar thermal power plants, and are suitable for concentrating photovoltaic (CPV) applications. PV cells are sensitive to spatial uniformity of incident light and the cell operating temperature. This requires the design of CPV-PTCs to be optimised both optically and thermally. Optical modelling can be performed using Monte Carlo Ray Tracing (MCRT), with conjugate heat transfer (CHT) modelling using the computational fluid dynamics (CFD) to analyse the overall designs. This paper develops and evaluates a CHT simulation for a concentrating solar thermal PTC collector. It uses the ray tracing work by Cheng et al. (2010) and thermal performance data for LS-2 parabolic trough used in the SEGS III-VII plants from Dudley et al. (1994). This is a preliminary step to developing models to compare heat transfer performances of faceted absorbers for concentrating photovoltaic (CPV) applications. Reasonable agreement between the simulation results and the experimental data confirms the reliability of the numerical model. The model explores different physical issues as well as computational issues for this particular kind of system modeling. The physical issues include the resultant non-uniformity of the boundary heat flux profile and the temperature profile around the tube, and uneven heating of the HTF. The numerical issues include, most importantly, the design of the computational domain/s, and the solution techniques of the turbulence quantities and the near-wall physics. This simulation confirmed that optical simulation and the computational CHT simulation of the collector can be accomplished independently.
Resumo:
In this work, the thermal expansion properties of carbon nanotube (CNT)-reinforced nanocomposites with CNT content ranging from 1 to 15 wt% were evaluated using a multi-scale numerical approach, in which the effects of two parameters, i.e., temperature and CNT content, were investigated extensively. For all CNT contents, the obtained results clearly revealed that within a wide low-temperature range (30°C ~ 62°C), thermal contraction is observed, while thermal expansion occurs in a high-temperature range (62°C ~ 120°C). It was found that at any specified CNT content, the thermal expansion properties vary with temperature - as temperature increases, the thermal expansion rate increases linearly. However, at a specified temperature, the absolute value of the thermal expansion rate decreases nonlinearly as the CNT content increases. Moreover, the results provided by the present multi-scale numerical model were in good agreement with those obtained from the corresponding theoretical analyses and experimental measurements in this work, which indicates that this multi-scale numerical approach provides a powerful tool to evaluate the thermal expansion properties of any type of CNT/polymer nanocomposites and therefore promotes the understanding on the thermal behaviors of CNT/polymer nanocomposites for their applications in temperature sensors, nanoelectronics devices, etc.
Resumo:
Introduction: Undergraduate students studying the Bachelor of Radiation Therapy at Queensland University of Technology (QUT) attend clinical placements in a number of department sites across Queensland. To ensure that the curriculum prepares students for the most common treatments and current techniques in use in these departments, a curriculum matching exercise was performed. Methods: A cross-sectional census was performed on a pre-determined “Snapshot” date in 2012. This was undertaken by the clinical education staff in each department who used a standardized proforma to count the number of patients as well as prescription, equipment, and technique data for a list of tumour site categories. This information was combined into aggregate anonymized data. Results: All 12 Queensland radiation therapy clinical sites participated in the Snapshot data collection exercise to produce a comprehensive overview of clinical practice on the chosen day. A total of 59 different tumour sites were treated on the chosen day and as expected the most common treatment sites were prostate and breast, comprising 46% of patients treated. Data analysis also indicated that intensity-modulated radiotherapy (IMRT) use is relatively high with 19.6% of patients receiving IMRT treatment on the chosen day. Both IMRT and image-guided radiotherapy (IGRT) indications matched recommendations from the evidence. Conclusion: The Snapshot method proved to be a feasible and efficient method of gathering useful
Resumo:
Data structures such as k-D trees and hierarchical k-means trees perform very well in approximate k nearest neighbour matching, but are only marginally more effective than linear search when performing exact matching in high-dimensional image descriptor data. This paper presents several improvements to linear search that allows it to outperform existing methods and recommends two approaches to exact matching. The first method reduces the number of operations by evaluating the distance measure in order of significance of the query dimensions and terminating when the partial distance exceeds the search threshold. This method does not require preprocessing and significantly outperforms existing methods. The second method improves query speed further by presorting the data using a data structure called d-D sort. The order information is used as a priority queue to reduce the time taken to find the exact match and to restrict the range of data searched. Construction of the d-D sort structure is very simple to implement, does not require any parameter tuning, and requires significantly less time than the best-performing tree structure, and data can be added to the structure relatively efficiently.
Resumo:
Graphene, one of the allotropes (diamond, carbon nanotube, and fullerene) of carbon, is a monolayer of honeycomb lattice of carbon atoms discovered in 2004. The Nobel Prize in Physics 2010 was awarded to Andre Geim and Konstantin Novoselov for their ground breaking experiments on the twodimensional graphene [1]. Since its discovery, the research communities have shown a lot of interest in this novel material owing to its unique properties. As shown in Figure 1, the number of publications on graphene has dramatically increased in recent years. It has been confirmed that graphene possesses very peculiar electrical properties such as anomalous quantum hall effect, and high electron mobility at room temperature (250000 cm2/Vs). Graphene is also one of the stiffest (modulus ~1 TPa) and strongest (strength ~100 GPa) materials. In addition, it has exceptional thermal conductivity (5000 Wm-1K-1). Based on these exceptional properties, graphene has found its applications in various fields such as field effect devices, sensors, electrodes, solar cells, energy storage devices and nanocomposites. Only adding 1 volume per cent graphene into polymer (e.g. polystyrene), the nanocomposite has a conductivity of ~0.1 Sm-1 [2], sufficient for many electrical applications. Significant improvement in strength, fracture toughness and fatigue strength has also been achieved in these nanocomposites [3-5]. Therefore, graphene-polymer nanocomposites have demonstrated a great potential to serve as next generation functional or structural materials.
Resumo:
Pumice is an extremely effective rafting agent that can dramatically increase the dispersal range of a variety of marine organisms and connect isolated shallow marine and coastal ecosystems. Here we report on a significant recent pumice rafting and long-distance dispersal event that occurred across the southwest Pacific following the 2006 explosive eruption of Home Reef Volcano in Tonga. We have constrained the trajectory, and rate, biomass and biodiversity of transfer, discovering more than 80 species and a substantial biomass underwent a .5000 km journey in 7–8 months. Differing microenvironmental conditions on the pumice, caused by relative stability of clasts at the sea surface, promoted diversity in biotic recruitment. Our findings emphasise pumice rafting as an important process facilitating the distribution of marine life, which have implications for colonisation processes and success, the management of sensitive marine environments, and invasive pest species.
Resumo:
Background Predicting protein subnuclear localization is a challenging problem. Some previous works based on non-sequence information including Gene Ontology annotations and kernel fusion have respective limitations. The aim of this work is twofold: one is to propose a novel individual feature extraction method; another is to develop an ensemble method to improve prediction performance using comprehensive information represented in the form of high dimensional feature vector obtained by 11 feature extraction methods. Methodology/Principal Findings A novel two-stage multiclass support vector machine is proposed to predict protein subnuclear localizations. It only considers those feature extraction methods based on amino acid classifications and physicochemical properties. In order to speed up our system, an automatic search method for the kernel parameter is used. The prediction performance of our method is evaluated on four datasets: Lei dataset, multi-localization dataset, SNL9 dataset and a new independent dataset. The overall accuracy of prediction for 6 localizations on Lei dataset is 75.2% and that for 9 localizations on SNL9 dataset is 72.1% in the leave-one-out cross validation, 71.7% for the multi-localization dataset and 69.8% for the new independent dataset, respectively. Comparisons with those existing methods show that our method performs better for both single-localization and multi-localization proteins and achieves more balanced sensitivities and specificities on large-size and small-size subcellular localizations. The overall accuracy improvements are 4.0% and 4.7% for single-localization proteins and 6.5% for multi-localization proteins. The reliability and stability of our classification model are further confirmed by permutation analysis. Conclusions It can be concluded that our method is effective and valuable for predicting protein subnuclear localizations. A web server has been designed to implement the proposed method. It is freely available at http://bioinformatics.awowshop.com/snlpred_page.php.
Resumo:
Background: Bicycle commuting in an urban environment of high air pollution is known as a potential health risk, especially for susceptible individuals. While risk management strategies aimed to reduce motorised traffic emissions exposure have been suggested, limited studies have assessed the utility of such strategies in real-world circumstances. Objectives: The potential of reducing exposure to ultrafine particles (UFP; < 0.1 µm) during bicycle commuting by lowering interaction with motorised traffic was investigated with real-time air pollution and acute inflammatory measurements in healthy individuals using their typical, and an alternative to their typical, bicycle commute route. Methods: Thirty-five healthy adults (mean ± SD: age = 39 ± 11 yr; 29% female) each completed two return trips of their typical route (HIGH) and a pre-determined altered route of lower interaction with motorised traffic (LOW; determined by the proportion of on-road cycle paths). Particle number concentration (PNC) and diameter (PD) were monitored in real-time in-commute. Acute inflammatory indices of respiratory symptom incidence, lung function and spontaneous sputum (for inflammatory cell analyses) were collected immediately pre-commute, and one and three hours post-commute. Results: LOW resulted in a significant reduction in mean PNC (1.91 x e4 ± 0.93 x e4 ppcc vs. 2.95 x e4 ± 1.50 x e4 ppcc; p ≤ 0.001). Besides incidence of in-commute offensive odour detection (42 vs. 56 %; p = 0.019), incidence of dust and soot observation (33 vs. 47 %; p = 0.038) and nasopharyngeal irritation (31 vs. 41 %; p = 0.007), acute inflammatory indices were not significantly associated to in-commute PNC, nor were these indices reduced with LOW compared to HIGH. Conclusions: Exposure to PNC, and the incidence of offensive odour and nasopharyngeal irritation, can be significantly reduced when utilising a strategy of lowering interaction with motorised traffic whilst bicycle commuting, which may bring important benefits for both healthy and susceptible individuals.
Resumo:
Air pollution has significant impacts on both the environment and human health. Therefore, urban areas have received ever growing attention, because they not only have the highest concentrations of air pollutants, but they also have the highest human population. In modern societies, urban air quality (UAQ) is routinely evaluated and local authorities provide regular reports to the public about current UAQ levels. Both local and international authorities also recommended that some air pollutant concentrations remain below a certain level, with the aim of reducing emissions and improving the air quality, both in urban areas and on a more regional scale. In some countries, protocols aimed at reducing emissions have come in force as a result of international agreements.
Resumo:
The objective of this research was to investigate the effects of driving conditions and suspension parameters on dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer. A novel nonlinear model of a multi-axle semi-trailer with longitudinal-connected air suspension was formulated based on fluid mechanics and thermodynamics and was validated through test results. The effects of driving conditions and suspension parameters on dynamic load-sharing and road-friendliness of the semi-trailer were analyzed. Simulation results indicate that the road-friendliness metric-DLC (dynamic load coefficient) is not always in accordance with the load-sharing metric-DLSC (dynamic load-sharing coefficient). The effect of employing larger air lines and connectors on the DLSC optimization ratio gives varying results as road roughness increases and as driving speed increases. When the vehicle load reduces, or the static pressure increases, the DLSC optimization ratio declines monotonically. The results also indicate that if the air line diameter is always assumed to be larger than the connector diameter, the influence of air line diameter on load-sharing is more significant than that of the connector.
Resumo:
Objective In Parkinson's disease (PD), commonly reported risk factors for malnutrition in other populations commonly occur. Few studies have explored which of these factors are of particular importance in malnutrition in PD. The aim was to identify the determinants of nutritional status in people with Parkinson's disease (PWP). Methods Community-dwelling PWP (>18 years) were recruited (n = 125; 73M/52F; Mdn 70 years). Self-report assessments included Beck's Depression Inventory (BDI), Spielberger Trait Anxiety Inventory (STAI), Scales for Outcomes in Parkinson's disease – Autonomic (SCOPA-AUT), Modified Constipation Assessment Scale (MCAS) and Freezing of Gait Questionnaire (FOG-Q). Information about age, PD duration, medications, co-morbid conditions and living situation was obtained. Addenbrooke's Cognitive Examination (ACE-R), Unified Parkinson's Disease Rating Scale (UPDRS) II and UPDRS III were performed. Nutritional status was assessed using the Subjective Global Assessment (SGA) as part of the scored Patient-Generated Subjective Global Assessment (PG-SGA). Results Nineteen (15%) were malnourished (SGA-B). Median PG-SGA score was 3. More of the malnourished were elderly (84% vs. 71%) and had more severe disease (H&Y: 21% vs. 5%). UPDRS II and UPDRS III scores and levodopa equivalent daily dose (LEDD)/body weight(mg/kg) were significantly higher in the malnourished (Mdn 18 vs. 15; 20 vs. 15; 10.1 vs. 7.6 respectively). Regression analyses revealed older age at diagnosis, higher LEDD/body weight (mg/kg), greater UPDRS III score, lower STAI score and higher BDI score as significant predictors of malnutrition (SGA-B). Living alone and higher BDI and UPDRS III scores were significant predictors of a higher log-adjusted PG-SGA score. Conclusions In this sample of PWP, the rate of malnutrition was higher than that previously reported in the general community. Nutrition screening should occur regularly in those with more severe disease and depression. Community support should be provided to PWP living alone. Dopaminergic medication should be reviewed with body weight changes.