773 resultados para Olive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Previous studies of stability and relapse after orthodontic treatment report short-term stability is generally followed by slow relapse to the original condition. What these studies do not report is whether this relapse is continuous or interspersed with periods of improvement or stability. Methods: A subjective 0-10 index of malocclusion was used to record post-treatment stability and relapse over 10 to 12 years following fixed appliance orthodontic treatment of 24 patients. The severity scores were plotted on timelines. Results: Episodes of change, both favourable and unfavourable, were interspersed with episodes of stability. Conclusions: Changes in the first 3 and 12 months post-treatment are indicative of the 10 to 12 years post-treatment outcomes. This index may provide a useful instrument to analyze patients and/or their study models longitudinally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional vaccines consisting of whole attenuated micro-organisms. or microbial components administered with adjuvant, have been demonstrated as one of the most cost-effective and successful public health interventions. Their use in large scale immunisation programs has lead to the eradication of smallpox, reduced morbidity and mortality from many once common diseases, and reduced strain on health services. However, problems associated with these vaccines including risk of infection. adverse effects, and the requirement for refrigerated transport and storage have led to the investigation of alternative vaccine technologies. Peptide vaccines, consisting of either whole proteins or individual peptide epitopes, have attracted much interest, as they may be synthesised to high purity and induce highly specific immune responses. However, problems including difficulties stimulating long lasting immunity. and population MHC diversity necessitating multiepitopic vaccines and/or HLA tissue typing of patients complicate their development. Furthermore, toxic adjuvants are necessary to render them immunogenic. and as such non-toxic human-compatible adjuvants need to be developed. Lipidation has been demonstrated as a human compatible adjuvant for peptide vaccines. The lipid-core-peptide (LCP) system. incorporating lipid adjuvant, carrier, and peptide epitopes, exhibits promise as a lipid-based peptide vaccine adjuvant. The studies reviewed herein investigate the use of the LCP system for developing vaccines to protect against group A streptococcal (GAS) infection. The studies demonstrate that LCP-based GAS vaccines are capable of inducing high-titres of antigen specific IgG antibodies. Furthermore. mice immunised with an LCP-based GAS vaccine were protected against challenge with 8830 strain GAS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background There is evidence for an adaptive role of the omega -3 fatty acid, docosahexaenoic acid (DHA) during stress. Mechanisms of action may involve regulation of stress mediators, such as the catecholamines and proinflammatory cytokines. Prevention of stress-induced aggression and hostility were demonstrated in a series of clinical trials. This study investigates whether perceived stress is ameliorated by DHA in stressed university staff. Methods Subjects that scored ≥ 17 on the Perceived Stress Scale were randomised into a 6-week pilot intervention study. The diet reactive group was supplemented with 6 g of fish oil containing 1.5 g per day DHA, while the placebo group was supplemented with 6 g a day of olive oil. The groups were compared with each other and a wider cross sectional study population that did not receive either active or placebo intervention. Results There was a significant reduction in perceived stress in both the fish oil and the placebo group from baseline. There was also a significant between-group difference between the fish oil group and the no-treatment controls in the rate of stress reduction (p < 0.05). However, there was not a significant between-group difference between the fish oil and the placebo group, nor the placebo group and the control group. These results are discussed in the context of several methodological limitations. The significant stress reductions in both the fish oil and the placebo group are considered in view of statistical regression, an effect likely to have been exaggerated by the time course of the study, a large placebo effect and the possibility of an active effect from the placebo. Conclusion There were significant differences (p < 0.05) in the fish oil group compared with no-treatment controls. This effect was not demonstrated in the placebo group. As a pilot study, it was not sufficiently powered to find the difference between the fish oil group and the placebo group significant. Further work needs to be undertaken to conclusively demonstrate these data trends. However, the findings from this research support the literature in finding a protective or 'adaptogenic' role for omega-3 fatty acids in stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using native chemical ligation, we synthesized a group A streptococcal. (GAS) vaccine that contained three different GAS M protein peptide epitopes in a chemically well-characterized construct in high purity. Two of the peptide epitopes represented variable amino terminal serotype determinants, and the third represented a carboxyl terminal conserved region determinant of the GAS M protein. We also synthesized a lipid core peptide (LCP) construct containing the same three peptides. Upon immunization of mice, the non-LCP construct only elicited antibody responses to all three epitopes with the use of adjuvant. The LCP construct, however, elicited excellent antibody responses to all three epitopes without the need for any additional adjuvant or carrier. We have synthesized the LCP synthetic vaccine system with good reproducibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background & objectives: To develop a broad strain coverage GAS vaccine, several strategies have been investigated which included multi-epitope approaches as well as targeting the M protein conserved C-region. These approaches, however, have relied on the use of adjuvants that are toxic for human application. The development of safe and effective adjuvants for human use is a key issue in the development of effective vaccines. In this study, we investigated the lipid polylysine core peptide (LCP) system as a self-adjuvanting GAS vaccine delivery approach. Methods: An LCP-GAS construct was synthesised incorporating multiple copies of a protective peptide epitope (J8) from the conserved carboxy terminal C-repeat region of the M protein. B10.BR mice were immunized parenterally with the LCP-J8 construct, with or without conventional adjuvant, prior to the assessment of immunogenicity and the induction of serum opsonic antibodies. Results: Our data demonstrated immunogenicity of LCP-J8 when coadministered in complete Freund's adjuvant (CFA), or administered in the absence of conventional adjuvant. In both cases, immunization led to the induction of high-titre J8 peptide-specific serum IgG antibody responses, and the induction of heterologous opsonic antibodies that did not cross-react with human heart tissue proteins. Interpretation & conclusion: These data indicated the potential of a novel self-adjuvanting LCP vaccine delivery system incorporating a synthetic GAS M protein C-region peptide immunogen in the induction of broadly protective immune responses, and pointed to the potential application of this system in human vaccine development against infectious diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new approach to enantiomerically pure 2,8-dialkyl-1,7-dioxaspiro[5.5]undecanes and 2,7-dialkyl-1,6-dioxaspiro [4.5] decanes is described and utilizes enantiomerically pure homopropargylic alcohols obtained from lithium acetylide opening of enantiomerically pure epoxides, which are, in turn, acquired by hydrolytic kinetic resolution of the corresponding racemic epoxides. Alkyne carboxylation and conversion to the Weinreb amide may be followed by triple-bond manipulation prior to reaction with a second alkynyllithium derived from a homo- or propargylic alcohol. In this way, the two ring components of the spiroacetal are individually constructed, with deprotection and cyclization affording the spiroacetal. The procedure is illustrated by acquisition of (2S,5R,7S) and (2R,5R,7S)-2-n-butyl-7-methyl-1,6-dioxaspiro[4.5]-decanes (1), (2S,6R,8S)-2-methyl-8-n-pentyl-1,7-dioxaspiro[5.5]undecane (2), and (2S,6R,8S)-2-methyl-8-n-propyl-1,7-dioxaspiro[5.5]undecane (3). The widely distributed insect component, (2S,6R,8S)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane (4), was acquired by linking two identical alkyne precursors via ethyl formate. In addition, [H-2(4)]-regioisomers, 10,10,11,11-[H-2(4)] and 4,4,5,5-[H-2(4)] of 3 and 4,4,5,5-[H-2(4)]-4, were acquired by triple-bond deuteration, using deuterium gas and Wilkinson's catalyst. This alkyne-based approach is, in principle, applicable to more complex spiroacetal systems not only by use of more elaborate alkynes but also by triple-bond functionalization during the general sequence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the lipid polylysine core peptide (LCP) system as a self-adjuvanting group A streptococcal (GAS) vaccine delivery approach. LCP constructs were synthesised incorporating peptides from the M protein conserved carboxy terminal C-repeat region, the amino terminal type-specific region and from both of these regions. Immunisation with the constructs without adjuvant led to the induction of peptide-specific serum IgG antibody responses, heterologous opsonic antibodies, and complete protection from GAS infection. These data indicate that protective immunity to GAS infection can be evoked using the self-adjuvanting LCP system, and point to the potential application of this system in human mucosal GAS vaccine development. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Group A streptococcus (GAS) is responsible for causing many clinical complications including the relatively benign streptococcal pharyngitis and impetigo. However. if left untreated. these conditions may lead to more severe diseases such as rheumatic fever (RF) and rheumatic heart disease (RHD). These diseases exhibit high morbidity and mortality, Particularly in developing countries and in indigenous populations of affluent countries. Only ever occur following GAS infection, a vaccine offers Promise for their Prevention. As stich, we have investigated the Use of the lipid-core peptide (LCP) system for the development of multi-valent Prophylactic GAS vaccines. The current study has investigated the capacity of this system to adjuvant LIP to four different GAS peptide epitopes. Presented are the synthesis and immunological assessment of tetra-valent and tri-valent GAS LCP systems. We demonstrated their capacity to elicit systemic IgG antibody responses in B10.BR mice to all GAS peptide epitopes. The data also showed that the LCP systems Were self-adjuvanting. These findings are particularly encouraging for the development of multi-valent LCP-based GAS vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed a highly pure, self-adjuvanting, triepitopic Group A Streptococcal vaccine based on the lipid core peptide system, a vaccine delivery system incorporating lipidic adjuvant, carrier, and peptide epitopes into a single molecular entity. Vaccine synthesis was performed using native chemical ligation. Due to the attachment of a highly lipophilic adjuvant, addition of 1% (w/v) sodium dodecyl sulfate was necessary to enhance peptide solubility in order to enable ligation. The vaccine was synthesized in three steps to yield a highly pure product (97.7% purity) with an excellent overall yield. Subcutaneous immunization of B10. BR (H-2(k)) mice with the synthesized vaccine, with or without the addition of complete Freund's adjuvant, elicited high serum IgG antibody titers against each of the incorporated peptide epitopes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional vaccines consisting of whole attenuated microorganisms, killed microorganisms, or microbial components, administered with an adjuvant (e.g. alum), have been proved to be extremely successful. However, to develop new vaccines, or to improve upon current vaccines, new vaccine development techniques are required. Peptide vaccines offer the capacity to administer only the minimal microbial components necessary to elicit appropriate immune responses, minimizing the risk of vaccination associated adverse effects, and focusing the immune response toward important antigens. Peptide vaccines, however, are generally poorly immunogenic, necessitating administration with powerful, and potentially toxic adjuvants. The attachment of lipids to peptide antigens has been demonstrated as a potentially safe method for adjuvanting peptide epitopes. The lipid core peptide (LCP) system, which incorporates a lipidic adjuvant, carrier, and peptide epitopes into a single molecular entity, has been demonstrated to boost immunogenicity of attached peptide epitopes without the need for additional adjuvants. The synthesis of LCP systems normally yields a product that cannot be purified to homogeneity. The current study describes the development of methods for the synthesis of highly pure LCP analogs using native chemical ligation. Because of the highly lipophilic nature of the LCP lipid adjuvant, difficulties (e.g. poor solubility) were experienced with the ligation reactions. The addition of organic solvents to the ligation buffer solubilized lipidic species, but did not result in successful ligation reactions. In comparison, the addition of approximately 1% (w/v) sodium dodecyl sulfate (SDS) proved successful, enabling the synthesis of two highly pure, tri-epitopic Streptococcus pyogenes LCP analogs. Subcutaneous immunization of B10.BR (H-2(k)) mice with one of these vaccines, without the addition of any adjuvant, elicited high levels of systemic IgG antibodies against each of the incorporated peptides. Copyright (c) 2006 European Peptide Society and John Wiley & Sons, Ltd.