806 resultados para Occupational Noise
Resumo:
Ensemble learning can be used to increase the overall classification accuracy of a classifier by generating multiple base classifiers and combining their classification results. A frequently used family of base classifiers for ensemble learning are decision trees. However, alternative approaches can potentially be used, such as the Prism family of algorithms that also induces classification rules. Compared with decision trees, Prism algorithms generate modular classification rules that cannot necessarily be represented in the form of a decision tree. Prism algorithms produce a similar classification accuracy compared with decision trees. However, in some cases, for example, if there is noise in the training and test data, Prism algorithms can outperform decision trees by achieving a higher classification accuracy. However, Prism still tends to overfit on noisy data; hence, ensemble learners have been adopted in this work to reduce the overfitting. This paper describes the development of an ensemble learner using a member of the Prism family as the base classifier to reduce the overfitting of Prism algorithms on noisy datasets. The developed ensemble classifier is compared with a stand-alone Prism classifier in terms of classification accuracy and resistance to noise.
Resumo:
In this paper, we present a polynomial-based noise variance estimator for multiple-input multiple-output single-carrier block transmission (MIMO-SCBT) systems. It is shown that the optimal pilots for noise variance estimation satisfy the same condition as that for channel estimation. Theoretical analysis indicates that the proposed estimator is statistically more efficient than the conventional sum of squared residuals (SSR) based estimator. Furthermore, we obtain an efficient implementation of the estimator by exploiting its special structure. Numerical results confirm our theoretical analysis.
Resumo:
Squirmish at the Oasis takes its name from Luigi Russolo's fourth noise network 'Skirmish at the Oasis' performed in Milan in 1913. 100 years on the Agency of Noise contemplate changes in technology and the culture industry that provoke new questions around the deliberate use of noise within music and art. Through live acts of enquiry and experimentation five artists unravel paradoxes associated with the use of noise in art, music and the gallery space. The works challenge tensions, contradictions and possible oxymorons that emerge through the use and acceptance of noise within an artistic framework. Featuring: DAISY DIXON / GRAHAM DUNNING / POLLYFIBRE / DANE SUTHERLAND / MARNIE WATTS
Resumo:
Ships and wind turbines generate noise, which can have a negative impact on marine mammal populations by scaring animals away. Effective modelling of how this affects the populations has to take account of the location and timing of disturbances. Here we construct an individual-based model of harbour porpoises in the Inner Danish Waters. Individuals have their own energy budgets constructed using established principles of physiological ecology. Data are lacking on the spatial distribution of food which is instead inferred from knowledge of time-varying porpoise distributions. The model produces plausible patterns of population dynamics and matches well the age distribution of porpoises caught in by-catch. It estimates the effect of existing wind farms as a 10% reduction in population size when food recovers fast (after two days). Proposed new wind farms and ships do not result in further population declines. The population is however sensitive to variations in mortality resulting from by-catch and to the speed at which food recovers after being depleted. If food recovers slowly the effect of wind turbines becomes negligible, whereas ships are estimated to have a significant negative impact on the population. Annual by-catch rates ≥10% lead to monotonously decreasing populations and to extinction, and even the estimated by-catch rate from the adjacent area (approximately 4.1%) has a strong impact on the population. This suggests that conservation efforts should be more focused on reducing by-catch in commercial gillnet fisheries than on limiting the amount of anthropogenic noise. Individual-based models are unique in their ability to take account of the location and timing of disturbances and to show their likely effects on populations. The models also identify deficiencies in the existing database and can be used to set priorities for future field research.
Resumo:
The Monte Carlo Independent Column Approximation (McICA) is a flexible method for representing subgrid-scale cloud inhomogeneity in radiative transfer schemes. It does, however, introduce conditional random errors but these have been shown to have little effect on climate simulations, where spatial and temporal scales of interest are large enough for effects of noise to be averaged out. This article considers the effect of McICA noise on a numerical weather prediction (NWP) model, where the time and spatial scales of interest are much closer to those at which the errors manifest themselves; this, as we show, means that noise is more significant. We suggest methods for efficiently reducing the magnitude of McICA noise and test these methods in a global NWP version of the UK Met Office Unified Model (MetUM). The resultant errors are put into context by comparison with errors due to the widely used assumption of maximum-random-overlap of plane-parallel homogeneous cloud. For a simple implementation of the McICA scheme, forecasts of near-surface temperature are found to be worse than those obtained using the plane-parallel, maximum-random-overlap representation of clouds. However, by applying the methods suggested in this article, we can reduce noise enough to give forecasts of near-surface temperature that are an improvement on the plane-parallel maximum-random-overlap forecasts. We conclude that the McICA scheme can be used to improve the representation of clouds in NWP models, with the provision that the associated noise is sufficiently small.
Resumo:
Objective. Functional near-infrared spectroscopy (fNIRS) is an emerging technique for the in vivo assessment of functional activity of the cerebral cortex as well as in the field of brain–computer interface (BCI) research. A common challenge for the utilization of fNIRS in these areas is a stable and reliable investigation of the spatio-temporal hemodynamic patterns. However, the recorded patterns may be influenced and superimposed by signals generated from physiological processes, resulting in an inaccurate estimation of the cortical activity. Up to now only a few studies have investigated these influences, and still less has been attempted to remove/reduce these influences. The present study aims to gain insights into the reduction of physiological rhythms in hemodynamic signals (oxygenated hemoglobin (oxy-Hb), deoxygenated hemoglobin (deoxy-Hb)). Approach. We introduce the use of three different signal processing approaches (spatial filtering, a common average reference (CAR) method; independent component analysis (ICA); and transfer function (TF) models) to reduce the influence of respiratory and blood pressure (BP) rhythms on the hemodynamic responses. Main results. All approaches produce large reductions in BP and respiration influences on the oxy-Hb signals and, therefore, improve the contrast-to-noise ratio (CNR). In contrast, for deoxy-Hb signals CAR and ICA did not improve the CNR. However, for the TF approach, a CNR-improvement in deoxy-Hb can also be found. Significance. The present study investigates the application of different signal processing approaches to reduce the influences of physiological rhythms on the hemodynamic responses. In addition to the identification of the best signal processing method, we also show the importance of noise reduction in fNIRS data.
Resumo:
A cluster of three texts following a conference panel on the Her Noise research and exhibition project (2005 - present, curated by Lina Dzuverovic and Anne Hilde Neset) in 2013 held at the 'Women in Music' Conference in New York. The articles have been published in Volume 20 of Women and Music: A Journal of Gender and Culture: “Intimate Publics in the Her Noise Archive,” by Holly Ingleton “Twice Erased: The silencing of Feminisms in Her Noise,” by Lina Dzuverovic “Why Not Our Voices? by Cathy Lane
Resumo:
The last 20 years have seen the emergence of a popular climate of antipathy towards occupational health and safety regulation within the UK, particularly within the mainstream British media. The governance of health and safety has thus in recent years become an increasingly visible and contested public and political issue. The extent of this contestation, and its impact on the State’s governance of health and safety in the workplace and beyond, is explained and historicized within this chapter. Why has public rhetoric about health and safety apparently become so important in framing the ways in which the State could legitimately act in recent years? The chapter demonstrates how since 1960 the State remained a significant player – one among many, admittedly – and that while its roles in managing health and safety had long been bounded by a number of factors, a variable that emerged with particular saliency over the last 20 years has been a mediated notion of ‘public opinion’. This focus serves to remind us of the ways in which State action has at certain moments been pushed in particular directions by factors beyond formal mechanisms of rule.
Resumo:
The study was a sound survey of naturally occurring noise in a metropolitan hospital NICU. The collected sound level samples were then compared to the noise standard recommended by the American Academy of Pediatrics. It was concluded that sound levels in the NICU exceed the standard and the standard does not have a proper foundation.
Resumo:
Little is known about the way speech in noise is processed along the auditory pathway. The purpose of this study was to evaluate the relation between listening in noise using the R-Space system and the neurophysiologic response of the speech-evoked auditory brainstem when recorded in quiet and noise in adult participants with mild to moderate hearing loss and normal hearing.
Resumo:
Studying joint noise is an important parameter for diagnosing temporomandibular dysfunction. In this study, eight groups (n=9) were formed according to joint dysfunction classification, provided by employing vibration analysis equipment. Parameters for analyzing joint noise were: total vibration energy, peak amplitude, and peak frequency. Mouth opening range was also analyzed. Statistical analysis results for each parameter were significant at 1 %. Each analyzed group presented different noise characteristics. This allowed for inclusion of the groups within a determined value category. The patient group with normal condyle/disk relationship always presented the lowest values. The type of joint noise was characterized by analyzing total integral noise, peak amplitude, peak frequency, and mouth opening. Analyzing joint noise using electrovibratography suggests the type of joint dysfunction and may help to establish a diagnosis, as well as a treatment plan.
Resumo:
This paper demonstrates by means of joint time-frequency analysis that the acoustic noise produced by the breaking of biscuits is dependent on relative humidity and water activity. It also shows that the time-frequency coefficients calculated using the adaptive Gabor transformation algorithm is dependent on the period of time a biscuit is exposed to humidity. This is a new methodology that can be used to assess the crispness of crisp foods. (c) 2007 Elsevier Ltd. All rights reserved.