995 resultados para Nuclear shape
Resumo:
A construct (AT1R-NF) containing a "Flag" sequence added to the N-terminus of the rat AT1 receptor was stably expressed in Chinese hamster ovary cells and quantified in the cell membrane by confocal microscopy after reaction with a fluorescein-labeled anti-Flag monoclonal antibody. Angiotensin II bound to AT1R-NF and induced endocytosis with a half-time of 2 min. After 60-90 min, fluorescence accumulated around the cell nucleus, suggesting migration of the ligand-receptor complex to the nuclear membrane. Angiotensin antagonists also induced endocytosis, suggesting that a common step in the transduction signal mechanism occurring after ligand binding may be responsible for the ligand-receptor complex internalization.
Resumo:
Shape memory alloys (SMA) are materials that have the ability to return to a former shape when subjected to an appropriate thermomechanical procedure. Pseudoelastic and shape memory effects are some of the behaviors presented by these alloys. The unique properties concerning these alloys have encouraged many investigators to look for applications of SMA in different fields of human knowledge. The purpose of this review article is to present a brief discussion of the thermomechanical behavior of SMA and to describe their most promising applications in the biomedical area. These include cardiovascular and orthopedic uses, and surgical instruments.
Resumo:
Although much is known about the molecules involved in extracellular Ca2+ regulation, the relationship of the ion with overall cell morphology is not understood. The objective of the present study was to determine the effect of the Ca2+ chelator EGTA on the major cytoskeleton components, at integrin-containing adhesion sites, and their consequences on cell shape. Control mouse cell line C2C12 has a well-spread morphology with long stress fibers running in many different directions, as detected by fluorescence microscopy using rhodamine-phalloidin. In contrast, cells treated with EGTA (1.75 mM in culture medium) for 24 h became bipolar and showed less stress fibers running in one major direction. The adhesion plaque protein alpha5-integrin was detected by immunofluorescence microscopy at fibrillar adhesion sites in both control and treated cells, whereas a dense labeling was seen only inside treated cells. Microtubules shifted from a radial arrangement in control cells to a longitudinal distribution in EGTA-treated cells, as analyzed by immunofluorescence microscopy. Desmin intermediate filaments were detected by immunofluorescence microscopy in a fragmented network dispersed within the entire cytoplasm in EGTA-treated cells, whereas a dense network was seen in the whole cytoplasm of control cells. The present results suggest that the role of extracellular Ca2+ in the regulation of C2C12 cell shape can be mediated by actin-containing stress fibers and microtubules and by intermediate filament reorganization, which may involve integrin adhesion sites.
Resumo:
We detected anti-human small nuclear ribonucleoprotein (snRNP) autoantibodies in chagasic patients by different immunological methods using HeLa snRNPs. ELISA with Trypanosoma cruzi total lysate antigen or HeLa human U small nuclear ribonucleoproteins (UsnRNPs) followed by incubation with sera from chronic chagasic and non-chagasic cardiac patients was used to screen and compare serum reactivity. Western blot analysis using a T. cruzi total cell extract was also performed in order to select some sera for Western blot and immunoprecipitation assays with HeLa nuclear extract. ELISA showed that 73 and 95% of chronic chagasic sera reacted with HeLa UsnRNPs and T. cruzi antigens, respectively. The Western blot assay demonstrated that non-chagasic cardiac sera reacted with high molecular weight proteins present in T. cruzi total extract, probably explaining the 31% reactivity found by ELISA. However, these sera reacted weakly with HeLa UsnRNPs, in contrast to the chagasic sera, which showed autoantibodies with human Sm (from Stefanie Smith, the first patient in whom this activity was identified) proteins (B/B', D1, D2, D3, E, F, and G UsnRNP). Immunoprecipitation reactions using HeLa nuclear extracts confirmed the reactivity of chagasic sera and human UsnRNA/RNPs, while the other sera reacted weakly only with U1snRNP. These findings agree with previously reported data, thus supporting the idea of the presence of autoimmune antibodies in chagasic patients. Interestingly, non-chagasic cardiac sera also showed reactivity with T. cruzi antigen and HeLa UsnRNPs, which suggests that individuals with heart disease of unknown etiology may develop autoimmune antibodies at any time. The detection of UsnRNP autoantibodies in chagasic patients might contribute to our understanding of how they develop upon initial T. cruzi infection.
Resumo:
The objective of the present investigation was to study the expression of c-erbB-2 and MIB-1 and try to associate them with morphological features of the cell such as nuclear pleomorphism, mitotic count and histological grade in a series of 70 canine mammary gland tumors, 22 of them benign and 48 malignant. Tumors were collected at the Veterinary Hospital of UFMG (Brazil) and the Veterinary Faculty of Porto University (Portugal). c-erbB-2 expression was determined according to the guidelines provided by the manufacturer of the HercepTest system and nuclear pleomorphism, mitotic count and histological grade according the Elston and Ellis grading system. The HercepTest is the FDA-approved in vitro diagnostic test marketed by Dako. It is a semi-quantitative immunohistochemical assay used to determine overexpression of HER2 protein (human epidermal growth factor receptor) in breast cancer tissue. MIB-1 expression was also evaluated in 28 malignant tumors. Seventeen (35.4%) of the malignant tumors were positive for c-erbB-2 expression, which was positively associated with nuclear pleomorphism (P < 0.0001), histological grade (P = 0.0017) and mitotic count (P < 0.05). Nuclear pleomorphism also showed a positive association with MIB-1 index (P < 0.0001). These results suggest that some of the biological and morphological characteristics of the tumor are associated in canine mammary gland tumors, as also reported for human breast cancer. It was also possible to show that the immunoexpression of c-erbB-2 can be a factor in mammary carcinogenesis. This fact opens the possibility of using anti-c-erbB-2 antibodies in the treatment of canine mammary tumors.
Resumo:
Desmin is the main intermediate filament (IF) protein of muscle cells. In skeletal muscle, desmin IFs form a scaffold that interconnects the entire contractile apparatus with the subsarcolemmal cytoskeleton and cytoplasmic organelles. The interaction between desmin and the sarcolemma is mediated by a number of membrane proteins, many of which are Ca2+-sensitive. In the present study, we analyzed the effects of the Ca2+ chelator EGTA (1.75 mM) on the expression and distribution of desmin in C2C12 myoblasts grown in culture. We used indirect immunofluorescence microscopy and reverse transcription polymerase chain reaction (RT-PCR) to analyze desmin distribution and expression in C2C12 cells grown in the presence or absence of EGTA. Control C2C12 myoblasts showed a well-spread morphology after a few hours in culture and became bipolar when grown for 24 h in the presence of EGTA. Control C2C12 cells showed a dense network of desmin from the perinuclear region to the cell periphery, whereas EGTA-treated cells showed desmin aggregates in the cytoplasm. RT-PCR analysis revealed a down-regulation of desmin expression in EGTA-treated C2C12 cells compared to untreated cells. The present results suggest that extracellular Ca2+ availability plays a role in the regulation of desmin expression and in the spatial distribution of desmin IFs in myoblasts, and is involved in the generation and maintenance of myoblast cell shape.
Resumo:
COSY proton nuclear magnetic resonance was used to measure the exchange rates of amide protons of hen egg white lysozyme (HEWL) in the pressure-assisted cold-denatured state and in the heat-denatured state. After dissolving lysozyme in deuterium oxide buffer, labile protons exchange for deuterons in such a way that exposed protons are substituted rapidly, whereas "protected" protons within structured parts of the protein are substituted slowly. The exchange rates k obs were determined for HEWL under heat treatment (80ºC) and under high pressure conditions at low temperature (3.75 kbar, -13ºC). Moreover, the influence of co-solvents (sorbitol, urea) on the exchange rate was examined under pressure-assisted cold denaturation conditions, and the corresponding protection factors, P, were determined. The exchange kinetics upon heat treatment was found to be a two-step process with initial slow exchange followed by a fast one, showing residual protection in the slow-exchange state and P-factors in the random-coil-like range for the final temperature-denatured state. Addition of sorbitol (500 mM) led to an increase of P-factors for the pressure-assisted cold denatured state, but not for the heat-denatured state. The presence of 2 M urea resulted in a drastic decrease of the P-factors of the pressure-assisted cold denatured state. For both types of co-solvents, the effect they exert appears to be cooperative, i.e., no particular regions within the protein can be identified with significantly diverse changes of P-factors.
Resumo:
Currently widely accepted consensus is that greenhouse gas emissions produced by the mankind have to be reduced in order to avoid further global warming. The European Union has set a variety of CO2 reduction and renewable generation targets for its member states. The current energy system in the Nordic countries is one of the most carbon free in the world, but the aim is to achieve a fully carbon neutral energy system. The objective of this thesis is to consider the role of nuclear power in the future energy system. Nuclear power is a low carbon energy technology because it produces virtually no air pollutants during operation. In this respect, nuclear power is suitable for a carbon free energy system. In this master's thesis, the basic characteristics of nuclear power are presented and compared to fossil fuelled and renewable generation. Nordic energy systems and different scenarios in 2050 are modelled. Using models and information about the basic characteristics of nuclear power, an opinion is formed about its role in the future energy system in Nordic countries. The model shows that it is possible to form a carbon free Nordic energy system. Nordic countries benefit from large hydropower capacity which helps to offset fluctuating nature of wind power. Biomass fuelled generation and nuclear power provide stable and predictable electricity throughout the year. Nuclear power offers better energy security and security of supply than fossil fuelled generation and it is competitive with other low carbon technologies.
Resumo:
The microenvironment of the tumor plays an important role in facilitating cancer progression and activating dormant cancer cells. Most tumors are infiltrated with inflammatory cells which secrete cytokines such as tumor necrosis factor-a (TNF-a). To evaluate the role of TNF-a in the development of cancer we studied its effects on cell migration with a migration assay. The migrating cell number in TNF-a -treated group is about 2-fold of that of the control group. Accordingly, the expression of E-cadherin was decreased and the expression of vimentin was increased upon TNF-a treatment. These results showed that TNF-a can promote epithelial-mesenchymal transition (EMT) of MCF-7 cells. Further, we found that the expression of Snail, an important transcription factor in EMT, was increased in this process, which is inhibited by the nuclear factor kappa B (NFkB) inhibitor aspirin while not affected by the reactive oxygen species (ROS) scavenger N-acetyl cysteine. Consistently, specific inhibition of NFkB by the mutant IkBa also blocked the TNF-a-induced upregulation of Snail promoter activity. Thus, the activation of NFkB, which causes an increase in the expression of the transcription factor Snail is essential in the TNF-a-induced EMT. ROS caused by TNF-a seemed to play a minor role in the TNF-a-induced EMT of MCF-7 cells, though ROS per se can promote EMT. These findings suggest that different mechanisms might be responsible for TNF-a - and ROS-induced EMT, indicating the need for different strategies for the prevention of tumor metastasis induced by different stimuli.
Resumo:
Calcium (Ca2+) is a versatile second messenger that regulates a wide range of cellular functions. Although it is not established how a single second messenger coordinates diverse effects within a cell, there is increasing evidence that the spatial patterns of Ca2+ signals may determine their specificity. Ca2+ signaling patterns can vary in different regions of the cell and Ca2+ signals in nuclear and cytoplasmic compartments have been reported to occur independently. No general paradigm has been established yet to explain whether, how, or when Ca2+ signals are initiated within the nucleus or their function. Here we highlight that receptor tyrosine kinases rapidly translocate to the nucleus. Ca2+ signals that are induced by growth factors result from phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol 1,4,5-trisphosphate formation within the nucleus rather than within the cytoplasm. This novel signaling mechanism may be responsible for growth factor effects on cell proliferation.
Resumo:
Angiotensin II (Ang II) plays a crucial role in the pathogenesis of renal diseases. The objective of the present study was to investigate the possible inflammatory effect of Ang II on glomerular endothelial cells and the underlying mechanism. We isolated and characterized primary cultures of rat glomerular endothelial cells (GECs) and observed that Ang II induced the synthesis of monocyte chemoattractant protein-1 (MCP-1) in GECs as demonstrated by Western blot. Ang II stimulation, at concentrations ranging from 0.1 to 10 µm, of rat GECs induced a rapid increase in the generation of reactive oxygen species as indicated by laser fluoroscopy. The level of p47phox protein, an NAD(P)H oxidase subunit, was also increased by Ang II treatment. These effects of Ang II on GECs were all reduced by diphenyleneiodonium (1.0 µm), an NAD(P)H oxidase inhibitor. Ang II stimulation also promoted the activation of nuclear factor-kappa B (NF-κB). Telmisartan (1.0 µm), an AT1 receptor blocker, blocked all the effects of Ang II on rat GECs. These data suggest that the inhibition of NAD(P)H oxidase-dependent NF-κB signaling reduces the increase in MCP-1 production by GECs induced by Ang II. This may provide a mechanistic basis for the benefits of selective AT1 blockade in dealing with chronic renal disease.
Resumo:
The occurrence of a weak auditory warning stimulus increases the speed of the response to a subsequent visual target stimulus that must be identified. This facilitatory effect has been attributed to the temporal expectancy automatically induced by the warning stimulus. It has not been determined whether this results from a modulation of the stimulus identification process, the response selection process or both. The present study examined these possibilities. A group of 12 young adults performed a reaction time location identification task and another group of 12 young adults performed a reaction time shape identification task. A visual target stimulus was presented 1850 to 2350 ms plus a fixed interval (50, 100, 200, 400, 800, or 1600 ms, depending on the block) after the appearance of a fixation point, on its left or right side, above or below a virtual horizontal line passing through it. In half of the trials, a weak auditory warning stimulus (S1) appeared 50, 100, 200, 400, 800, or 1600 ms (according to the block) before the target stimulus (S2). Twelve trials were run for each condition. The S1 produced a facilitatory effect for the 200, 400, 800, and 1600 ms stimulus onset asynchronies (SOA) in the case of the side stimulus-response (S-R) corresponding condition, and for the 100 and 400 ms SOA in the case of the side S-R non-corresponding condition. Since these two conditions differ mainly by their response selection requirements, it is reasonable to conclude that automatic temporal expectancy influences the response selection process.
Resumo:
Blood pressure (BP) and physical activity (PA) levels are inversely associated. Since genetic factors account for the observed variation in each of these traits, it is possible that part of their association may be related to common genetic and/or environmental influences. Thus, this study was designed to estimate the genetic and environmental correlations of BP and PA phenotypes in nuclear families from Muzambinho, Brazil. Families including 236 offspring (6 to 24 years) and their 82 fathers and 122 mothers (24 to 65 years) were evaluated. BP was measured, and total PA (TPA) was assessed by an interview (commuting, occupational, leisure time, and school time PA). Quantitative genetic modeling was used to estimate maximal heritability (h²), and genetic and environmental correlations. Heritability was significant for all phenotypes (systolic BP: h² = 0.37 ± 0.10, P < 0.05; diastolic BP: h² = 0.39 ± 0.09, P < 0.05; TPA: h² = 0.24 ± 0.09, P < 0.05). Significant genetic (r g) and environmental (r e) correlations were detected between systolic and diastolic BP (r g = 0.67 ± 0.12 and r e = 0.48 ± 0.08, P < 0.05). Genetic correlations between BP and TPA were not significant, while a tendency to an environmental cross-trait correlation was found between diastolic BP and TPA (r e = -0.18 ± 0.09, P = 0.057). In conclusion, BP and PA are under genetic influences. Systolic and diastolic BP share common genes and environmental influences. Diastolic BP and TPA are probably under similar environmental influences.