950 resultados para Nonlinear structural behavior


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nature of the intense visible room temperature photoluminescence of BaZr0.5Ti0.5O3 non-crystalline thin films is discussed in the light of experimental results and theoretical calculations. The photoluminescence measurements reveal that the emission intensity changes with the degree of disorder in the BaZr0.5Ti0.5O3 lattice. First principles quantum mechanical techniques, based on density functional theory at B3LYP level, have been employed to study the electronic structure of a crystalline model and of structurally disordered models in order to detect the influence of disorder on the electronic structure. An analysis of the electronic charge distribution reveals local polarization in the disordered structures. The relevance of the present theoretical and experimental results on the photoluminescence behavior of BZT is discussed. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The correlation between experimental data and theoretical calculations have been investigated to explain the photoluminescence at room temperature of Ba(Ti0.75Zr0.25)O-3 (BTZ) thin films prepared by the polymeric precursor method. The degree of structural order-disorder was investigated by X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy and photoluminescence (PL) measurements. First-principles quantum mechanical calculations based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and deformed asymmetric models. The electronic properties are analyzed and the relevance of the present theoretical and experimental results on the PL behavior is discussed. The presence of localized electronic levels and a charge gradient in the band gap due to a break in symmetry, are responsible for the PL in disordered BTZ lattice. (c) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of heat-treatments on the electrochemical behavior of thermal spray Cr3C2-NiCr coatings prepared by high velocity oxygen fuel (HVOF) was studied in NaCl solution, at 25 degrees C, using open-circuit potential (E-OC) and electrochemical impedance spectroscopy (EIS) measurements. Coating characterization were performed before and after the heat-treatments and electrochemical tests by scanning electron microscopy, X-ray diffraction, and Auger electron spectroscopy. In addition to the changes in the original powder composition occurring during HVOF process, heat-treatment performed at 450 degrees C caused no significant changes in electrochemical response compared with untreated sample, and at 760 degrees C the main difference was the formation of a thin and defective layer of Cr2O3 at the coating surface, which increased the total impedance at the first day of immersion. Higher influence on the electrochemical was noted for samples treated at 880 degrees C, which also showed higher E-OC and total impedance, and lower corrosion current. This behavior was interpreted considering the formation of a chromium oxide layer on the coating surface, dissolution and decomposition of smaller carbide particles and their surface enrichment with Cr due to C diffusion and dissolution into the matrix, and possible Ni, Cr, and Fe diffusion to coating/substrate interface. (c) 2006 the Electrochemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Depending on the composition, the mixture of surfactant, oil and water, may form supramolecular aggregates with different structures which can significantly influence the drug release. In this work several microemulsion (ME) systems containing soya phosphatidylcholine (SPC) and eumulgin HRE40 (TM) (EU) as surfactant, cholesterol (O) as oil phase, and ultra-pure water as an aqueous phase were studied. MEs with and without the antitumoral drug doxorubicin (DOX) were prepared. The microstructures of the systems were characterized by photon correlation spectroscopy, rheological behavior, polarized light microscopy, small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD). The results reveal that the diameter of the oil droplets was dependent on the surfactant (S) amount added to formulations. The apparent viscosity was dependent on the O/S ratio. High O/S ratio leads to the crystallization of cholesterol polymorphs phases which restricts the mobility of the DOX molecules into the ME structure. Droplets with short-range spatial correlation were formed from the ME with the low O/S ratio. The increase of the cholesterol fraction in the O/S mixture leads to the formation of ordered structures with lamellar arrangements. These different structural organizations directly influenced the drug release profiles. The in vitro release assay showed that the increase of the O/S ratio in the formulations inhibited the constant rate of DOX release. Since the DOX release ratio was directly dependent on the ratio of O/S following an exponential decay profile, this feature can be used to control the DOX release from the ME formulations. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, vitreous samples were prepared in the binary system (100 - x)NaPO3-xMO(3) with M = Mo and W and x varying from 10 to 60. The transmittance properties in the UV, visible, and near-infrared were monitored as a function of MO3 concentration. In both cases, an increase in the amount of transition metal results in an intense and broad absorption band in the visible and near-infrared attributed to metal reduction under synthesis conditions. It was shown that this large absorption can be partially or totally removed using specific oxidizing agents or by improving synthesis parameters such as melting temperature or cooling rate of the melt. In addition, structural investigations by Raman and X-ray absorption spectroscopy suggest that reduction only occurs when the metal cation is in octahedral geometry and that the transmittance improvement is not related with any structural changes. These results were explained in terms of thermodynamic equilibrium of redox species in the melt and allowed to obtain for the first time transparent and chemically stable glasses containing high concentrations of MO3 with transition metals in octahedral geometry inside the glass network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin films were prepared using glass precursors obtained in the ternary system NaPO(3)-BaF(2)-WO(3) and the binary system NaPO(3)-WO(3) with high concentrations of WO(3) (above 40% molar). Vitreous samples have been used as a target to prepare thin films. Such films were deposited using the electron beam evaporation method onto soda-lime glass substrates. Several structural characterizations were performed by Raman spectroscopy and X-ray Absorption Near Edge Spectroscopy (XANES) at the tungsten L(I) and L(III) absorption edges. XANES investigations showed that tungsten atoms are only sixfold coordinated (octahedral WO(6)) and that these films are free of tungstate tetrahedral units (WO(4)). In addition, Raman spectroscopy allowed identifying a break in the linear phosphate chains as the amount of WO(3) increases and the formation of P-O-W bonds in the films network indicating the intermediary behavior of WO(6) octahedra in the film network. Based on XANES data, we suggested a new attribution of several Raman absorption bands which allowed identifying the presence of W-O and W=O terminal bonds and a progressive apparition of W-O-W bridging bonds for the most WO(3) concentrated samples (above 40% molar) attributed to the formation of WO(6) clusters. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we studied the structural and optical properties of lithium tantalate (LiTaO3) powders doped with Eu3+ ions. We have examined the different sites occupied by the rare earth ion through the correlation of the DRX data analyzed with the Rietveld method and some spectroscopic parameters derived from the Eu3+ luminescence. Adirect relation was established between the lattice parameters and the occupation fraction of Eu3+ in each LiTaO3 site. The occupation fraction was set as the relative population of Eu3+ ions for each site obtained by means of the intensity, baricenter, and the spontaneous emission coefficients of the D-5(0)-> F-7(0) transitions. We concluded that the unit cell parameter a presents the same behavior of the Eu3+ occupation fraction in Ta5+ sites as a function of the Eu3+ content in LiTaO3. The same was observed for the variation in Eu3+ occupation fraction in the Li+ site and the unit cell parameter c with the Eu3+ content. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3204967]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two different carbon/epoxy prepreg materials were characterized and compared using thermal (DSC, TGA, and DMA) and rheological analyses. A prepreg system (carbon fiber preimpregnated with epoxy resin F584) that is currently used in the commercial airplane industry was compared with a prepreg system that is a prospective candidate for the same applications (carbon fiber prepreg/epoxy resin 8552). The differences in the curing kinetics mechanisms of both prepreg systems were identified through the DSC, TGA, DMA, and rheological analyses. Based on these thermal analysis techniques, it was verified that the curing of both epoxy resin systems follow a cure kinetic of n order. Even though their reaction heats were found to be slightly different, the kinetics of these systems were nevertheless very similar. The activation energies for both prepreg systems were determined by DSC analysis, using Arrhenius's method, and were found to be quite similar. DMA measurements of the cured prepregs demonstrated that they exhibited similar degrees of cure and different glass transition temperatures. Furthermore, the use of the rheological analysis revealed small differences in the gel temperatures of the two prepreg systems that were examined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoluminescence (PL) behavior of SrBi2Nb2O9 (SBN) powders was explained by means of beta-Bi2O3 phase on the SBN lattice. Oxygen vacancies and recombination of electrons holes in the valence band lead to the formation of [NbO5 center dot V-O(x)], [NbO5 center dot V-O(center dot)] and [NbO5 center dot V-O(center dot center dot)] complex clusters which are the main reason for the PL at room temperature. X-ray diffraction and Fourier transform Raman spectroscopy were used as tools to investigate the structural changes in SBN lattice allowing to correlate [NbO5 center dot V-O(center dot)]/[NbO6](') ratio with the evolution of the visible PL emission in the SBN powders. (c) 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical nonlinearity of tungstate fluorophosphate glasses, synthesized in the NaPO3-BaF2-WO3 system, was investigated through experiments based on the third-order susceptibility, chi((3)). Nonlinear (NL) refraction and NL absorption measurements in the picosecond regime were performed using the Z-scan technique at 532 nm. NL refractive index, n(2)proportional toRe chi((3)), ranging from 0.4x10(-14) cm(2)/W to 0.6x10(-14) cm(2)/W were determined. The two-photon absorption coefficient, alpha(2)proportional toIm chi((3)), for excitation at 532 nm, vary from 0.3 to 0.5 cm/GW. Light induced birefringence experiments performed in the femtosecond regime indicate that the response time of the nonlinearity at 800 nm is faster than 100 fs. The experiments show that chi((3)) is enhanced when the WO3 concentration increases and this behavior is attributed to the hyperpolarizabilities associated to W-O bonds. (C) 2004 American Institute of Physics.