953 resultados para Non-structural concrete


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this thesis is the atomic-scale simulation of the crystal-chemical and physical (phonon, energetic) properties of some strategically important minerals for structural ceramics, biomedical and petrological applications. These properties affect the thermodynamic stability and rule the mineral-environment interface phenomena, with important economical, (bio)technological, petrological and environmental implications. The minerals of interest belong to the family of phyllosilicates (talc, pyrophyllite and muscovite) and apatite (OHAp), chosen for their importance in industrial and biomedical applications (structural ceramics) and petrophysics. In this thesis work we have applicated quantum mechanics methods, formulas and knowledge to the resolution of mineralogical problems ("Quantum Mineralogy”). The chosen theoretical approach is the Density Functional Theory (DFT), along with periodic boundary conditions to limit the portion of the mineral in analysis to the crystallographic cell and the hybrid functional B3LYP. The crystalline orbitals were simulated by linear combination of Gaussian functions (GTO). The dispersive forces, which are important for the structural determination of phyllosilicates and not properly con-sidered in pure DFT method, have been included by means of a semi-empirical correction. The phonon and the mechanical properties were also calculated. The equation of state, both in athermal conditions and in a wide temperature range, has been obtained by means of variations in the volume of the cell and quasi-harmonic approximation. Some thermo-chemical properties of the minerals (isochoric and isobaric thermal capacity) were calculated, because of their considerable applicative importance. For the first time three-dimensional charts related to these properties at different pressures and temperatures were provided. The hydroxylapatite has been studied from the standpoint of structural and phonon properties for its biotechnological role. In fact, biological apatite represents the inorganic phase of vertebrate hard tissues. Numerous carbonated (hydroxyl)apatite structures were modelled by QM to cover the broadest spectrum of possible biological structural variations to fulfil bioceramics applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urease is a nickel-dependent enzyme that catalyzes hydrolysis of urea in the last step of organic nitrogen mineralization. Its active site contains a dinuclear center for Ni(II) ions that must be inserted into the apo-enzyme through the action of four accessory proteins (UreD, UreE, UreF, UreG) leading to activation of urease. UreE, acting as a metallo-chaperone, delivers Ni(II) to the preformed complex of apo-urease-UreDFG and has the capability to enhance the GTPase activity of UreG. This study, focused on characterization of UreE from Sporosarcina pasteurii (SpUreE), represents a piece of information on the structure/mobility-function relationships that control nickel binding by SpUreE and its interaction with SpUreG. A calorimetric analysis revealed the occurrence of a binding event between these proteins with positive cooperativity and a stoichiometry consistent with the formation of the (UreE)2-(UreG)2 hetero-oligomer complex. Chemical Shift Perturbations induced by the protein-protein interaction were analyzed using high-resolution NMR spectroscopy, which allowed to characterize the molecular details of the protein surface of SpUreE involved in the complex formation with SpUreG. Moreover, backbone dynamic properties of SpUreE, determined using 15N relaxation analysis, revealed a general mobility in the nanoseconds time-scale, with the fastest motions observed at the C-termini. The latter analysis made it possible for the first time to characterize of the C-terminal portions, known to contain key residues for metal ion binding, that were not observed in the crystal structure of UreE because of disorder. The residues belonging to this portion of SpUreE feature large CSPs upon addition of SpUreG, showing that their chemical environment is directly affected by protein-protein interaction. Metal ion selectivity and affinity of SpUreE for cognate Ni(II) and non cognate Zn(II) metal ions were determined, and the ability of the protein to select Ni(II) over Zn(II), in consistency with the proposed role in Ni(II) cations transport, was established.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last decade the near-surface mounted (NSM) strengthening technique using carbon fibre reinforced polymers (CFRP) has been increasingly used to improve the load carrying capacity of concrete members. Compared to externally bonded reinforcement (EBR), the NSM system presents considerable advantages. This technique consists in the insertion of carbon fibre reinforced polymer laminate strips into pre-cut slits opened in the concrete cover of the elements to be strengthened. CFRP reinforcement is bonded to concrete with an appropriate groove filler, typically epoxy adhesive or cement grout. Up to now, research efforts have been mainly focused on several structural aspects, such as: bond behaviour, flexural and/or shear strengthening effectiveness, and energy dissipation capacity of beam-column joints. In such research works, as well as in field applications, the most widespread adhesives that are used to bond reinforcements to concrete are epoxy resins. It is largely accepted that the performance of the whole application of NSM systems strongly depends on the mechanical properties of the epoxy resins, for which proper curing conditions must be assured. Therefore, the existence of non-destructive methods that allow monitoring the curing process of epoxy resins in the NSM CFRP system is desirable, in view of obtaining continuous information that can provide indication in regard to the effectiveness of curing and the expectable bond behaviour of CFRP/adhesive/concrete systems. The experimental research was developed at the Laboratory of the Structural Division of the Civil Engineering Department of the University of Minho in Guimar\~aes, Portugal (LEST). The main objective was to develop and propose a new method for continuous quality control of the curing of epoxy resins applied in NSM CFRP strengthening systems. This objective is pursued through the adaptation of an existing technique, termed EMM-ARM (Elasticity Modulus Monitoring through Ambient Response Method) that has been developed for monitoring the early stiffness evolution of cement-based materials. The experimental program was composed of two parts: (i) direct pull-out tests on concrete specimens strengthened with NSM CFRP laminate strips were conducted to assess the evolution of bond behaviour between CFRP and concrete since early ages; and, (ii) EMM-ARM tests were carried out for monitoring the progressive stiffness development of the structural adhesive used in CFRP applications. In order to verify the capability of the proposed method for evaluating the elastic modulus of the epoxy, static E-Modulus was determined through tension tests. The results of the two series of tests were then combined and compared to evaluate the possibility of implementation of a new method for the continuous monitoring and quality control of NSM CFRP applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental decay in porous masonry materials, such as brick and mortar, is a widespread problem concerning both new and historic masonry structures. The decay mechanisms are quite complex dependng upon several interconnected parameters and from the interaction with the specific micro-climate. Materials undergo aesthetical and substantial changes in character but while many studies have been carried out, the mechanical aspect has been largely understudied while it bears true importance from the structural viewpoint. A quantitative assessment of the masonry material degradation and how it affects the load-bearing capacity of masonry structures appears missing. The research work carried out, limiting the attention to brick masonry addresses this issue through an experimental laboratory approach via different integrated testing procedures, both non-destructive and mechanical, together with monitoring methods. Attention was focused on transport of moisture and salts and on the damaging effects caused by the crystallization of two different salts, sodium chloride and sodium sulphate. Many series of masonry specimens, very different in size and purposes were used to track the damage process since its beginning and to monitor its evolution over a number of years Athe same time suitable testing techniques, non-destructive, mini-invasive, analytical, of monitoring, were validated for these purposes. The specimens were exposed to different aggressive agents (in terms of type of salt, of brine concentration, of artificial vs. open-air natural ageing, …), tested by different means (qualitative vs. quantitative, non destructive vs. mechanical testing, punctual vs. wide areas, …), and had different size (1-, 2-, 3-header thick walls, full-scale walls vs. small size specimens, brick columns and triplets vs. small walls, masonry specimens vs. single units of brick and mortar prisms, …). Different advanced testing methods and novel monitoring techniques were applied in an integrated holistic approach, for quantitative assessment of masonry health state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Group B Streptococcus (GBS) is a Gram-positive human pathogen representing one of the most common causes of life-threatening bacterial infections such as sepsis and meningitis in neonates. Covalently polymerized pilus-like structures have been discovered in GBS as important virulence factors as well as vaccine candidates. Pili are protein polymers forming long and thin filamentous structures protruding from bacterial cells, mediating adhesion and colonization to host cells. Gram-positive bacteria, including GBS, build pili on their cell surface via a class C sortase-catalyzed transpeptidation mechanism from pilin protein substrates that are the backbone protein forming the pilus shaft and two ancillary proteins. Also the cell-wall anchoring of the pilus polymers made of covalently linked pilin subunits is mediated by a sortase enzyme. GBS expresses three structurally distinct pilus types (type 1, 2a and 2b). Although the mechanisms of assembly and cell wall anchoring of GBS types 1 and 2a pili have been investigated, those of pilus 2b are not understood until now. Pilus 2b is frequently found in ST-17 strains that are mostly associated with meningitis and high mortality rate especially in infants. In this work the assembly mechanism of GBS pilus type 2b has been elucidated by dissecting through genetic, biochemical and structural studies the role of the two pilus-associated sortases. The most significant findings show that pilus 2b assembly appears “non-canonical”, differing significantly from current pilus assembly models in Gram-positive pathogens. Only sortase-C1 is involved in pilin polymerization, while the sortase-C2 does not act as a pilin polymerase, but it is involved in cell-wall pilus anchoring. Our findings provide new insights into pili biogenesis in Gram-positive bacteria. Moreover, the role of this pilus type during host infection has been investigated. By using a mouse model of meningitis we demonstrated that type 2b pilus contributes to pathogenesis of meningitis in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis aims at connecting structural and functional changes of complex soft matter systems due to external stimuli with non-covalent molecular interaction profiles. It addresses the problem of elucidating non-covalent forces as structuring principle of mainly polymer-based systems in solution. The structuring principles of a wide variety of complex soft matter types are analyzed. In many cases this is done by exploring conformational changes upon the exertion of external stimuli. The central question throughout this thesis is how a certain non-covalent interaction profile leads to solution condition-dependent structuring of a polymeric system.rnTo answer this question, electron paramagnetic resonance (EPR) spectroscopy is chosen as the main experimental method for the investigation of the structure principles of polymers. With EPR one detects only the local surroundings or environments of molecules that carry an unpaired electron. Non-covalent forces are normally effective on length scales of a few nanometers and below. Thus, EPR is excellently suited for their investigations. It allows for detection of interactions on length scales ranging from approx. 0.1 nm up to 10 nm. However, restriction to only one experimental technique likely leads to only incomplete pictures of complex systems. Therefore, the presented studies are frequently augmented with further experimental and computational methods in order to yield more comprehensive descriptions of the systems chosen for investigation.rnElectrostatic correlation effects in non-covalent interaction profiles as structuring principles in colloid-like ionic clusters and DNA condensation are investigated first. Building on this it is shown how electrostatic structuring principles can be combined with hydrophobic ones, at the example of host-guest interactions in so-called dendronized polymers (denpols).rnSubsequently, the focus is shifted from electrostatics in dendronized polymers to thermoresponsive alkylene oxide-based materials, whose structuring principles are based on hydrogen bonds and counteracting hydrophobic interactions. The collapse mechanism in dependence of hydrophilic-hydrophobic balance and topology of these polymers is elucidated. Complementarily the temperature-dependent phase behavior of elastin-like polypeptides (ELPs) is investigated. ELPs are the first (and so far only) class of compounds that is shown to feature a first-order inverse phase transition on nanoscopic length scales.rnFinally, this thesis addresses complex biological systems, namely intrinsically disordered proteins (IDPs). It is shown that the conformational space of the IDPs Osteopontin (OPN), a cytokine involved in metastasis of several kinds of cancer, and BASP1 (brain acid soluble protein one), a protein associated with neurite outgrowth, is governed by a subtle interplay between electrostatic forces, hydrophobic interaction, system entropy and hydrogen bonds. Such, IDPs can even sample cooperatively folded structures, which have so far only been associated with globular proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work is included in the context of the assessment of sustainability in the construction field and is aimed at estimating and analyzing life cycle cost of the existing reinforced concrete bridge “Viadotto delle Capre” during its entire life. This was accomplished by a comprehensive data collection and results evaluation. In detail, the economic analysis of the project is performed. The work has investigated possible design alternatives for maintenance/rehabilitation and end-of-life operations, when structural, functional, economic and also environmental requirements have to be fulfilled. In detail, the economic impact of different design options for the given reinforced concrete bridge have been assessed, whereupon the most economically, structurally and environmentally efficient scenario was chosen. The Integrated Life-Cycle Analysis procedure and Environmental Impact Assessment were also discussed in this work. The scope of this thesis is to illustrate that Life Cycle Cost analysis as part of Life Cycle Assessment approach could be effectively used to drive the design and management strategy of new and existing structures. The final objective of this contribution is to show how an economic analysis can influence decision-making in the definition of the most sustainable design alternatives. The designers can monitor the economic impact of different design strategies in order to identify the most appropriate option.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structure characterization of nanocrystalline intermediates and metastable phases is of primary importance for a deep understanding of synthetic processes undergoing solid-to-solid state phase transitions. Understanding the evolution from the first nucleation stage to the final synthetic product supports not only the optimization of existing processes, but might assist in tailoring new synthetic paths. A systematic investigation of intermediates and metastable phases is hampered because it is impossible to produce large crystals and only in few cases a pure synthetic product can be obtained. Structure investigation by X-ray powder diffraction methods is still challenging on nanoscale, especially when the sample is polyphasic. Electron diffraction has the advantage to collect data from single nanoscopic crystals, but is limited by data incompleteness, dynamical effects and fast deterioration of the sample under the electron beam. Automated diffraction tomography (ADT), a recently developed technique, making possible to collect more complete three-dimensional electron diffraction data and to reduce at the same time dynamical scattering and beam damage, thus allowing to investigate even beam sensitive materials (f.e. hydrated phases and organics). At present, ADT is the only technique able to deliver complete three-dimensional structural information from single nanoscopic grains, independently from other surrounding phases. Thus, ADT is an ideal technique for the study of on-going processes where different phases exist at the same time and undergo several structural transitions. In this study ADT was used as the main technique for structural characterization for three different systems and combined subsequently with other techniques, among which high-resolution transmission electron microscopy (HRTEM), cryo-TEM imaging, X-ray powder diffraction (XRPD) and energy disperse X-ray spectroscopy (EDX).rnAs possible laser host materials, i.e. materials with a broad band emission in the near-infrared region, two unknown phases were investigated in the ternary oxide system M2O-Al2O3-WO3 (M = K, Na). Both phases exhibit low purity as well as non-homogeneous size distribution and particle morphology. The structures solved by ADT are also affected by pseudo-symmetry. rnSodium titanate nanotubes and nanowires are both intermediate products in the synthesis of TiO2 nanorods which are used as additives to colloidal TiO2 film for improving efficiency of dye-sensitized solar cells (DSSC). The structural transition from nantubes to nanowires was investigated in a step by step time-resolved study. Nanowires were discovered to consist of a hitherto unknown phase of sodium titanate. This new phase, typically affected by pervasive defects like mutual layer shift, was structurally determined ab-initio on the basis of ADT data. rnThe third system is related with calcium carbonate nucleation and early crystallization. The first part of this study is dedicated to the extensive investigations of calcium carbonate formation in a step by step analysis, up to the appearance of crystalline individua. The second part is dedicated to the structure determination by ADT of the first-to-form anhydrated phase of CaCO3: vaterite. An exhaustive structure analysis of vaterite had previously been hampered by diffuse scattering, extra periodicities and fast deterioration of the material under electron irradiation. rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Il collasso di diverse colonne, caratterizzate da danneggiamenti simili, quali ampie fessure fortemente inclinate ad entrambe le estremità dell’elemento, lo schiacciamento del calcestruzzo e l’instabilità dei ferri longitudinali, ha portato ad interrogarsi riguardo gli effetti dell’interazione tra lo sforzo normale, il taglio ed il momento flettente. Lo studio è iniziato con una ricerca bibliografica che ha evidenziato una sostanziale carenza nella trattazione dell’argomento. Il problema è stato approcciato attraverso una ricerca di formule della scienza delle costruzioni, allo scopo di mettere in relazione lo sforzo assiale, il taglio ed il momento; la ricerca si è principalmente concentrata sulla teoria di Mohr. In un primo momento è stata considerata l’interazione tra solo due componenti di sollecitazione: sforzo assiale e taglio. L’analisi ha condotto alla costruzione di un dominio elastico di taglio e sforzo assiale che, confrontato con il dominio della Modified Compression Field Theory, trovata tramite ricerca bibliografica, ha permesso di concludere che i risultati sono assolutamente paragonabili. L’analisi si è poi orientata verso l’interazione tra sforzo assiale, taglio e momento flettente. Imponendo due criteri di rottura, il raggiungimento della resistenza a trazione ed a compressione del calcestruzzo, inserendo le componenti di sollecitazione tramite le formule di Navier e Jourawsky, sono state definite due formule che mettono in relazione le tre azioni e che, implementate nel software Matlab, hanno permesso la costruzione di un dominio tridimensionale. In questo caso non è stato possibile confrontare i risultati, non avendo la ricerca bibliografica mostrato niente di paragonabile. Lo studio si è poi concentrato sullo sviluppo di una procedura che tenta di analizzare il comportamento di una sezione sottoposta a sforzo normale, taglio e momento: è stato sviluppato un modello a fibre della sezione nel tentativo di condurre un calcolo non lineare, corrispondente ad una sequenza di analisi lineari. La procedura è stata applicata a casi reali di crollo, confermando l’avvenimento dei collassi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work done is about the seismic analysis of an existing reinforced concrete structure that is equipped with a special bracing device. The main objective of the research is to provide a simple procedure that can be followed in order to design the lateral bracing system in such a way that the actual behavior of the structure matches the desired pre-defined objective curve. a great attention is devoted to the internal actions in the structural elements produced by the braces. The device used is called: Crescent shaped braces. This device is a special type of bracing because it has a banana-like geometry that allows the designer to have more control over the stiffness of the structure, especially under cyclic behavior, Unlike the conventional bracing that resists only through its axial stiffness. This device has been installed in a hospital in Italy. However, it has not been exposed to any ground motion so far. Different analysis methods, such as static pushover and dynamic time-history have been used in the analysis of the structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rock-pocket and honeycomb defects impair overall stiffness, accelerate aging, reduce service life, and cause structural problems in hardened concrete members. Traditional methods for detecting such deficient volumes involve visual observations or localized nondestructive methods, which are labor-intensive, time-consuming, highly sensitive to test conditions, and require knowledge of and accessibility to defect locations. The authors propose a vibration response-based nondestructive technique that combines experimental and numerical methodologies for use in identifying the location and severity of internal defects of concrete members. The experimental component entails collecting mode shape curvatures from laboratory beam specimens with size-controlled rock pocket and honeycomb defects, and the numerical component entails simulating beam vibration response through a finite element (FE) model parameterized with three defect-identifying variables indicating location (x, coordinate along the beam length) and severity of damage (alpha, stiffness reduction and beta, mass reduction). Defects are detected by comparing the FE model predictions to experimental measurements and inferring the low number of defect-identifying variables. This method is particularly well-suited for rapid and cost-effective quality assurance for precast concrete members and for inspecting concrete members with simple geometric forms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ASTM A529 carbon¿manganese steel angle specimens were joined by flash butt welding and the effects of varying process parameter settings on the resulting welds were investigated. The weld metal and heat affected zones were examined and tested using tensile testing, ultrasonic scanning, Rockwell hardness testing, optical microscopy, and scanning electron microscopy with energy dispersive spectroscopy in order to quantify the effect of process variables on weld quality. Statistical analysis of experimental tensile and ultrasonic scanning data highlighted the sensitivity of weld strength and the presence of weld zone inclusions and interfacial defects to the process factors of upset current, flashing time duration, and upset dimension. Subsequent microstructural analysis revealed various phases within the weld and heat affected zone, including acicular ferrite, Widmanstätten or side-plate ferrite, and grain boundary ferrite. Inspection of the fracture surfaces of multiple tensile specimens, with scanning electron microscopy, displayed evidence of brittle cleavage fracture within the weld zone for certain factor combinations. Test results also indicated that hardness was increased in the weld zone for all specimens, which can be attributed to the extensive deformation of the upset operation. The significance of weld process factor levels on microstructure, fracture characteristics, and weld zone strength was analyzed. The relationships between significant flash welding process variables and weld quality metrics as applied to ASTM A529-Grade 50 steel angle were formalized in empirical process models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-uniform sampling (NUS) has been established as a route to obtaining true sensitivity enhancements when recording indirect dimensions of decaying signals in the same total experimental time as traditional uniform incrementation of the indirect evolution period. Theory and experiments have shown that NUS can yield up to two-fold improvements in the intrinsic signal-to-noise ratio (SNR) of each dimension, while even conservative protocols can yield 20-40 % improvements in the intrinsic SNR of NMR data. Applications of biological NMR that can benefit from these improvements are emerging, and in this work we develop some practical aspects of applying NUS nD-NMR to studies that approach the traditional detection limit of nD-NMR spectroscopy. Conditions for obtaining high NUS sensitivity enhancements are considered here in the context of enabling H-1,N-15-HSQC experiments on natural abundance protein samples and H-1,C-13-HMBC experiments on a challenging natural product. Through systematic studies we arrive at more precise guidelines to contrast sensitivity enhancements with reduced line shape constraints, and report an alternative sampling density based on a quarter-wave sinusoidal distribution that returns the highest fidelity we have seen to date in line shapes obtained by maximum entropy processing of non-uniformly sampled data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rumiana Stoilova (Bulgaria). Social Policy Facing the Problems of Youth Employment. Ms. Stoilova is a researcher in the Institute of Sociology in Sofia and worked on this project from October 1996 to September 1998. This project involved collecting both statistical and empirical data on the state of youth employment in Bulgaria, which was then compared with similar data from other European countries. One significant aspect was the parallel investigation of employment and unemployment, which took as a premise the continuity of professional experience where unemployment is just a temporary condition caused by external and internal factors. These need to be studied and changed on a systematic basis so as to create a more favourable market situation and to improve individuals' resources for improving their market opportunities. A second important aspect of the project was an analysis of the various entities active on the labour market, including government and private institutions, associations of unemployed persons, of employers or of trade unions, all with their specific legal powers and interests, and of the problems in communication between these. The major trends in youth unemployment during the period studied include a high proportion of the registered unemployed who are not eligible for social assistance, a lengthening of the average period of unemployment, an increase in the percentage of people who are unemployed for the first time and an increasing percentage of these who are not eligible for assistance, particularly among newly registered young people. At the same time the percentage of those for who work has been found is rising and during the last three years an increasing number of the unemployed have started some independent economic activity. Regional differences are also considerable and in the case of the Haskovo region represent a danger of losing the youngest generation, with resulting negative demographic effects. One major weakness of the existing institutional structure is the large scale of the black labour market, with clear negative implications for the young people drawn into it. The role of non-governmental organisations in providing support and information for the unemployed is growing and the government has recently introduced special preferences for organisations offering jobs to unemployed persons. Social policy in the labour market has however been largely restricted to passive measures, mostly because of the risk that poverty poses to people continuously excluded from the labour market. Among the active measures taken, well over half are concerned with providing jobs for the unemployed and there are very limited programmes for providing or improving qualifications. The nature of youth employment in Bulgaria can be seen in the influence of sustained structures (generation) and institutions (family and school). Ms. Stoilova studied the situation of the modern generation through a series of profiles, mostly those of continuously unemployed and self-employed persons, but also distinguishing between students and the unemployed, and between high school and university students. The different categories of young people were studied in separate mini-studies and the survey was carried out in five town in order to gather objective and subjective information on the state of the labour market in the different regions. She conducted interviews with several hundred young people covering questions of family background, career plans, attitudes to the labour situation and government measures to deal with it, and such questions as independence, mobility, attitude to work, etc. The interviews with young people unemployed for a long period of time show the risk involved in starting work and its link with dynamics of economic development. Their approval of structural reforms, of the financial restrictions connected with the introduction of a currency board and the inevitability of unemployment was largely declarative. The findings indicate that the continuously unemployed need practical knowledge and skills to "translate" the macroeconomic realities in concrete alternatives of individual work and initiative. The unemployed experience their exclusion from the labour market not only as a professional problem but also as an existential threat, of poverty, forced mobility and dependence on their parents' generation. The exclusion from the market of goods and services means more than just exercising restraint in their consumption, as it places restrictions on their personal development. Ms. Stoilova suggests that more efficient ways of providing financial aid and mobilisation are needed to counteract the social disintegration and marginalisation of the continuously unemployed. In measuring the speed of reform, university students took both employment opportunities and the implementation of the meritocratic principle in employment into account. When offered a hypothetical choice between a well-paid job and work in one's own profession, 62% would prefer opt for the well-paid job and for working for a company that offered career opportunities rather than employment in a family or own company. While most see the information gained during their studies as useful and interesting, relatively few see their education as competitive on a wider level and many were pessimistic about employment opportunities based on their qualifications. Very similar attitudes were found among high school students, with differences being due rather to family and personal situations. The unemployed, on the other hand, placed greater emphasis on possibilities of gaining or improving qualifications on a job and for the opportunities it would offer for personal contacts. High school students tend to attribute more significance to opportunities for personal accomplishment. A significant difference that five times fewer high school students were willing to work for state-owned companies, and many fewer expected to find permanent employment or to find a job in the area where they lived, Within the family situation, actual support for children seems to be higher than the feelings of confidence expressed in interviews. The attitudes of the families towards past experience seems to be linked with their ability to cope with the difficulties of the present, with those families which show an optimistic and active attitude towards the future having a greater respect for parents experience and tolerance in communication between parents and children.