854 resultados para Non-host resistance
Resumo:
Creatine Kinase (CK) is used as a measure of exercise-induced muscle membrane damage. During acute eccentric (muscle lengthening) exercise, muscle sarcolemma, sarcoplasmic reticulum, and Z-lines are damaged, thus causing muscle proteins and enzymes to leak into the interstitial fluid. Strenuous eccentric exercise produces an elevation of oxygen free radicals, which further increases muscle damage. Muscle soreness and fatigue can be attributed to this membrane damage. Estradiol, however, may preserve membrane stability post-exercise (Brancaccio, Maffulli, & Limongelli, 2007; Carter, Dobridge, & Hackney, 2001; Tiidus, 2001). Because estradiol has a similar structure to Vitamin E, which is known to have antioxidant properties, and both are known to affect membrane structure, researchers have proposed that estrogen acts as an antioxidant to provide a protective effect on the post-exercise muscle of women (Sandoval & Matt, 2002). As a result, it has been postulated that muscles in women incur less damage in response to an acute strenuous exercise as compared to men. PURPOSE: To determine if circulating estrogen concentrations are related to muscle damage, as measured by creatine kinase activity and to determine gender differences in creatine kinase as a marker of muscle damage in response to an acute heavy resistance exercise protocol. METHODS: 7 healthy, resistance-trained, eumenhorrheic women (23±3 y, 169±9.1 cm, 66.4±10.5 kg) and 8 healthy, resistance-trained men (25±5 y, 178±6.7 cm, 82.3±9.33 kg) volunteered to participate in the study. Subjects performed an Acute Resistance Exercise Test (ARET) consisting of 6 sets of 5 repetitions Smith machine squats at 90% of their previously determined 1-RM. Blood samples were taken pre-, mid-, post-, 1 hour post-, 6 hours post-, and 24 hours post-exercise. Samples were stored at -80ºC until analyzed. Serum creatine kinase was measured using an assay kit from Genzyme (Framingham, MA). Serum estradiol was measured by an ELISA from GenWay (San Diego, CA). Estradiol b-receptor presence on granulocytes was measured via flow cytometry using primary antibodies from Abcam (Cambridge, MA) and PeCy7 antibodies (secondary) from Santa Cruz (Santa Cruz, CA). RESULTS: No significant correlations between estrogen and CK response were found after an acute resistant exercise protocol. Moreover, no significant change in estradiol receptors were expressed on granulocytes after exercise. Creatine Kinase response, however, differed significantly between genders. Men had higher resting CK concentrations throughout all time points. Creatine Kinase response increased significantly after exercise in both men and women (p=0.008, F=9.798). Men had a significantly higher CK response at 24 hours post exercise than women. A significant condition/sex/time interaction was exhibited in CK response (p=0.02, F=4.547). Perceived general soreness presented a significant condition, sex interaction (p=0.01, F=9.532). DISCUSSION: Although no estradiol and CK response correlations were found in response to exercise, a significant difference in creatine kinase activity was present between men and women. This discrepancy of our results and findings in the literature may be due to the high variability between subjects in creatine kinase activity as well as estrogen concentrations. The lack of significance in change of estradiol receptor expression on granulocytes in response to exercise may be due to intracellular estradiol receptor staining and non-specific gating for granulocytes rather than additional staining for neutrophil markers. Because neutrophils are the initial cells present in the inflammatory response after strenuous exercise, staining for estrogen receptors on this cell type may allow for a better understanding of the effect of estrogen and its hypothesized protective effect against muscle damage. Furthermore, the mechanism of action may include estradiol receptor expression on the muscle fiber itself may play a role in the protective effects of estradiol rather than or in addition to expression on neutrophils. We have shown here that gender differences occur in CK activity as a marker of muscle damage in response to strenuous eccentric exercise, but may not be the result of estradiol concentration or estradiol receptor expression on granulocytes. Other variables should be examined in order to determine the mechanism involved in the difference in creatine kinase as a marker of muscle damage between men and women after heavy resistance exercise.
Resumo:
Background. The population-based Houston Tuberculosis Initiative (HTI) study has enrolled and gathered demographic, social, behavioral, and disease related data on more than 80% of all reported Mycobacterium Tuberculosis (MTB) cases and 90% of all culture positive patients in Houston/Harris County over a 9 year period (from October 1995-September 2004). During this time period 33% (n=1210) of HTI MTB cases have reported a history of drug use. Of those MTB cases reporting a history of drug use, a majority of them (73.6%), are non-injection drug users (NIDUs). ^ Other than HIV, drug use is the single most important risk factor for progression from latent to infectious tuberculosis (TB). In addition, drug use is associated with increased transmission of active TB, as seen by the increased number of clonally related strains or clusters (see definition on page 30) found in this population. The deregulatory effects of drug use on immune function are well documented. Associations between drug use and increased morbidity have been reported since the late 1970's. However, limited research focused on the immunological consequence of non-injection drug use and its relation to tuberculosis infection among TB patients is available. ^ Methods. TB transmission patterns, symptoms, and prevalence of co-morbidities were a focus of this project. Smoking is known to suppress Nitric Oxide (NO) production and interfere with immune function. In order to limit any possible confounding due to smoking two separate analyses were done. Non-injection drug user smokers (NIDU-S) were compared to non-drug user smokers (NDU-S) and non-injection drug user non-smokers (NIDU-NS) were compared to non-drug user non-smokers (NDU-NS) individually. Specifically proportions, chi-square p-values, and (where appropriate) odds ratios with 95% confidence intervals were calculated to assess characteristics and potential associations of co-morbidities and symptoms of TB among NIDUs HTI TB cases. ^ Results. Significant differences in demographic characteristics and risk factors were found. In addition drug users were found to have a decreased risk for cancer, diabetes mellitus, and chronic pulmonary disease. They were at increased risk of having HIV/AIDS diagnosis, liver disease, and trauma related morbidities. Drug users were more likely to have pulmonary TB disease, and a significantly increased amount of clonally related strains of TB or "clusters" were seen in both smokers and non-smoker drug users when compared to their non-drug user counterparts. Drug users are more likely to belong to print groups (clonally related TB strains with matching spoligotypes) including print one and print three and the Beijing family group, s1. Drug users were found to be no more likely to experience drug resistance to TB therapy and were likely to be cured of disease upon completion of therapy. ^ Conclusion. Drug users demographic and behavioral risk factors put them at an increased risk contracting and spreading TB disease throughout the community. Their increased levels of clustering are evidence of recent transmission and the significance of certain print groups among this population indicate the transmission is from within the social family. For these reasons a focus on this "at risk population" is critical to the success of future public health interventions. Successful completion of directly observed therapy (DOT), the tracking of TB outbreaks and incidence through molecular characterization, and increased diagnostic strategies have led to the stabilization of TB incidence in Houston, Harris County over the past 9 years and proven that the Houston Tuberculosis Initiative has played a critical role in the control and prevention of TB transmission. ^
Resumo:
Objective. To evaluate the host risk factors associated with rifamycin-resistant Clostridium difficile (C. diff) infection in hospitalized patients compared to rifamycin-susceptible C.diff infection.^ Background. C. diff is the most common definable cause of nosocomial diarrhea affecting elderly hospitalized patients taking antibiotics for prolonged durations. The epidemiology of Clostridium difficile associated disease is now changing with the reports of a new hypervirulent strain causing hospital outbreaks. This new strain is associated with increased disease severity and mortality. The conventional therapy for C. diff includes metronidazole and vancomycin but high recurrence rates and treatment failures are now becoming a major concern. Rifamycin antibiotics are being developed as a new therapeutic option to treat C. diff infection after their efficacy was established in a few in vivo and in vitro studies. There are some recent studies that report an association between the hypervirulent strain and emerging rifamycin resistance. These findings assess the need for clinical studies to better understand the efficacy of rifamycin drugs against C. diff.^ Methods. This is a hospital-based, matched case-control study using de-identified data drawn from two prospective cohort studies involving C. diff patients at St Luke's Hospital. The C. diff isolates from these patients are screened for rifamycin resistance using agar dilution methods for minimum inhibitory concentrations (MIC) as part of Dr Zhi-Dong Jiang's study. Twenty-four rifamycin-rifamycin resistant C. diff cases were identified and matched with one rifamycin susceptible C. diff control on the basis of ± 10 years of age and hospitalization 30 days before or after the case. De-identified data for the 48 subjects was obtained from Dr Kevin Garey's clinical study at St Luke's Hospital enrolling C. diff patients. It was reviewed to gather information about host risk factors, outcome variables and relevant clinical characteristic.^ Results. Medical diagnosis at the time of admission (p = 0.0281) and history of chemotherapy (p = 0.022) were identified as a significant risk factor while hospital stay ranging from 1 week to 1 month and artificial feeding were identified as an important outcome variable (p = 0.072 and p = 0.081 respectively). Horn's Index assessing the severity of underlying illness and duration of antibiotics for cases and controls showed no significant difference.^ Conclusion. The study was a small project designed to identify host risk factors and understand the clinical implications of rifamycin-resistance. The study was underpowered and a larger sample size is needed to validate the results.^
Resumo:
Brain metastasis is resistant to chemotherapy while the leaky blood-brain-barrier in brain metastasis can not be the underlying reason. Metastatic tumor cells (“seed”) exploit the host microenvironment (“soil”) for survival advantages. Astrocytes which maintain the homeostasis of the brain microenvironment become reactive subsequent to brain damages and protect neurons from various injuries. We observed reactive astrocytes surrounding and infiltrating into brain metastasis in both clinical specimen and experimental animal model, thus raising a possibility that reactive astrocytes may protect tumor cells from cytotoxic chemotherapeutic drugs. ^ To test this hypothesis, we first generated an immortalized astrocyte cell line from H-2Kb-tsA58 mice. The immortal mouse astrocytes expressed specific markers including GFAP. Scanning electron microscopy demonstrated that astrocytes formed direct physical contact with tumor cells. Moreover, the expression of GFAP by astrocytes was up-regulated subsequent to co-culture with tumor cells, indicating that the co-culture of astrocytes and tumor cells may serve as a model to recapitulate the pathophysiological situation of brain metastasis. ^ In co-culture, astrocytes dramatically reduced apoptosis of tumor cells produced by various chemotherapeutic drugs. This protection effect was not because of culturing cells from different species since mouse fibroblasts did not protect tumor cells from chemotherapy. Furthermore, the protection by astrocytes was completely dependent on a physical contact. ^ Gap junctional communication (GJC) served as this physical contact. Tumor cells and astrocytes both expressed the major component of gap junctional channel—connexin 43 and formed functional GJC as evidenced by the “dye transfer” assay. The blockage of GJC between tumor cells and astrocytes by either specific chemical blocker carbenoxolone (CBX) or by genetically knocking down connexin 43 on astrocytes reversed the chemo-protection. ^ Calcium was the signal molecule transmitted through GJC that rescued tumor cells from chemotherapy. Accumulation of cytoplasmic calcium preceded the progress of apoptosis in tumor cells treated with chemotherapeutic drugs. Furthermore, chelation of accumulated cytoplasmic calcium inhibited the apoptosis of tumor cells treated with chemotherapeutic drugs. Most importantly, astrocytes could “shunt” the accumulated cytoplasmic calcium from tumor cells (treated with chemotherapeutic drug) through GJC. We also used gene expression micro-array to investigate global molecular consequence of tumor cells forming GJC with astrocytes. The data demonstrated that astrocytes (but not fibroblasts), through GJC, up-regulated the expressions of several well known survival genes in tumor cells. ^ In summary, this dissertation provides a novel mechanism underlying the resistance of brain metastasis to chemotherapy, which is due to protection by astrocytes through GJC. Interference with the GJC between astrocytes and tumor cells holds great promise in sensitizing brain metastasis to chemotherapy and improving the prognosis for patients with brain metastasis. ^
Resumo:
The aims of the study were to determine the prevalence of and factors that affect non-adherence to first line antiretroviral (ARV) medications among HIV infected children and adolescents in Botswana. The study used secondary data from Botswana-Baylor Children's Clinical Center of Excellence for the period of June 2008 to February 10th, 2010. The study design was cross-sectional and case-comparison between non-adherent and adherent participants was used to examine the effects of socio-demographic and medication factors on non-adherence to ARV medications. A case was defined as non-adherent child with adherence level < 95% based on pill count and measurement of liquid formulations. The comparison group consisted of children with adherence levels ≥95%.^ A total of 842 participants met the eligibility criteria for determination of the prevalence of non-adherence and 338 participants (169 cases and 169 individuals) were used in the analysis to estimate the effects of factors on non-adherence. ^ Univariate and multivariable logistic regression were used to estimate the association between non-adherence (outcome) and socio-demographic and medication factors (exposures). The prevalence of non-adherence for participants on first line ARV medications was 20.0% (169/842).^ Increase in age (OR (95% CI): 1.10 (1.04–1.17) p = 0.001) was associated with nonadherence, while increase in number of caregivers (OR (95% CI): 0.72 (0.56–0.93) p = 0.01) and increase in number of monthly visits (OR (95% CI): 0.92 (0.86–0.99) p = 0.02), were associated with good adherence in both the unadjusted and the adjusted models. For the categorical variables, having more than two caregivers (OR (95% CI): 0.66 (0.28–0.84), p = 0.002) was associated with good adherence even in the adjusted model. ^ Conclusion. The prevalence of non-adherence to antiretroviral medicines among the study population was estimated to be 20.0%. In previous studies, adherence levels of ≥ 95% have been associated with better clinical outcomes and suppression of virus to prevent development of resistance. Older age, fewer numbers of caregivers and fewer monthly visits were associated with non-adherence. Strategies to improve and sustain adherence especially among older children are needed. The role of caregivers and social support should be investigated further.^
Resumo:
Gemcitabine is a potent nucleoside analogue against solid tumors however drug resistance rapidly emerges. Removal of gemcitabine incorporated in the DNA by repair mechanisms could potentially contribute to resistance in chemo-refractory solid tumors. In this study, we evaluated homologous recombination repair of gemcitabine-stalled replication forks as a potential mechanism contributing to resistance. We also studied the effect of hyperthermia on homologous recombination pathway to explain the previously reported synergy between gemcitabine and hyperthermia. We found that hyperthermia degrades and inhibits localization of Mre11 to gemcitabine-stalled replication forks. Furthermore, gemcitabine-treated cells that were also treated with hyperthermia demonstrate a prolonged passage through late S/ G2 phase of cell cycle in comparison to cells treated with gemcitabine alone. This coincides with inhibition of resolution of γH2AX foci. Our findings also demonstrate that thermal sensitization of human hepatocellular carcinoma cell lines to gemcitabine is mediated through an Mre11-dependent homologous recombination repair pathway. Combination of non-invasive radiofrequency field-induced hyperthermia and gemcitabine was superior to either therapy alone (p
Resumo:
Lung cancer is the leading cause of cancer-related mortality in the US. Emerging evidence has shown that host genetic factors can interact with environmental exposures to influence patient susceptibility to the diseases as well as clinical outcomes, such as survival and recurrence. We aimed to identify genetic prognostic markers for non-small cell lung cancer (NSCLC), a major (85%) subtype of lung cancer, and also in other subgroups. With the fast evolution of genotyping technology, genetic association studies have went through candidate gene approach, to pathway-based approach, to the genome wide association study (GWAS). Even in the era of GWAS, pathway-based approach has its own advantages on studying cancer clinical outcomes: it is cost-effective, requiring a smaller sample size than GWAS easier to identify a validation population and explore gene-gene interactions. In the current study, we adopted pathway-based approach focusing on two critical pathways - miRNA and inflammation pathways. MicroRNAs (miRNA) post-transcriptionally regulate around 30% of human genes. Polymorphisms within miRNA processing pathways and binding sites may influence patients’ prognosis through altered gene regulation. Inflammation plays an important role in cancer initiation and progression, and also has shown to impact patients’ clinical outcomes. We first evaluated 240 single nucleotide polymorphisms (SNPs) in miRNA biogenesis genes and predicted binding sites in NSCLC patients to determine associations with clinical outcomes in early-stage (stage I and II) and late-stage (stage III and IV) lung cancer patients, respectively. First, in 535 early-stage patients, after correcting multiple comparisons, FZD4:rs713065 (hazard ratio [HR]:0.46, 95% confidence interval [CI]:0.32-0.65) showed a significant inverse association with survival in early stage surgery-only patients. SP1:rs17695156 (HR:2.22, 95% CI:1.44-3.41) and DROSHA:rs6886834 (HR:6.38, 95% CI:2.49-16.31) conferred increased risk of progression in the all patients and surgery-only populations, respectively. FAS:rs2234978 was significantly associated with improved survival in all patients (HR:0.59, 95% CI:0.44-0.77) and in the surgery plus chemotherapy populations (HR:0.19, 95% CI:0.07-0.46).. Functional genomics analysis demonstrated that this variant creates a miR-651 binding site resulting in altered miRNA regulation of FAS, providing biological plausibility for the observed association. We then analyzed these associations in 598 late-stage patients. After multiple comparison corrections, no SNPs remained significant in the late stage group, while the top SNP NAT1:rs15561 (HR=1.98, 96%CI=1.32-2.94) conferred a significantly increased risk of death in the chemotherapy subgroup. To test the hypothesis that genetic variants in the inflammation-related pathways may be associated with survival in NSCLC patients, we first conducted a three-stage study. In the discovery phase, we investigated a comprehensive panel of 11,930 inflammation-related SNPs in three independent lung cancer populations. A missense SNP (rs2071554) in HLA-DOB was significantly associated with poor survival in the discovery population (HR: 1.46, 95% CI: 1.02-2.09), internal validation population (HR: 1.51, 95% CI: 1.02-2.25), and external validation (HR: 1.52, 95% CI: 1.01-2.29) population. Rs2900420 in KLRK1 was significantly associated with a reduced risk for death in the discovery (HR: 0.76, 95% CI: 0.60-0.96) and internal validation (HR: 0.77, 95% CI: 0.61-0.99) populations, and the association reached borderline significance in the external validation population (HR: 0.80, 95% CI: 0.63-1.02). We also evaluated these inflammation-related SNPs in NSCLC patients in never smokers. Lung cancer in never smokers has been increasingly recognized as distinct disease from that in ever-smokers. A two-stage study was performed using a discovery population from MD Anderson (411 patients) and a validation population from Mayo Clinic (311 patients). Three SNPs (IL17RA:rs879576, BMP8A:rs698141, and STK:rs290229) that were significantly associated with survival were validated (pCD74:rs1056400 and CD38:rs10805347) were borderline significant (p=0.08) in the Mayo Clinic population. In the combined analysis, IL17RA:rs879576 resulted in a 40% reduction in the risk for death (p=4.1 × 10-5 [p=0.61, heterogeneity test]). We also validated a survival tree created in MD Anderson population in the Mayo Clinic population. In conclusion, our results provided strong evidence that genetic variations in specific pathways that examined (miRNA and inflammation pathways) influenced clinical outcomes in NSCLC patients, and with further functional studies, the novel loci have potential to be translated into clinical use.
Resumo:
Non-melanoma skin cancer (NMSC) is the most frequently diagnosed form of cancer in United States. As in many other cancers, this slow growing malignancy manifests deregulated expression of apoptosis regulating proteins including bcl-2 family member proteins. To understand the role of apoptosis regulating protein in epidermal homeostasis and progression of NMSC, we investigated keratinocyte proliferation, differentiation and tumorigenesis in bcl-2 and bax null mice. The rate and the pattern of proliferation and spontaneous cell death were the same between the null and the control mice. Both bcl-2 and bax null epidermis showed decreased levels of cytokeratin 14 expression compared to the control littermates. Also, the gene knock out mice showed higher expression of cytokeratin 1 and loricrin in epidermis compared to the control mice. The apoptotic response to genotoxic agent, UV radiation (UVR), was assessed by counting sunburn cells. The bax null keratinocytes showed a resistance to apoptosis while bcl-2 null mice showed an increased susceptibility to cell death compared to the control mice. Moreover, we demonstrated an increase in tumor incidence in bax null mice compared to control littermates in the in vivo chemical carcinogenesis study. Next, we examined the tumor suppressor role of bax protein in NMSC by studying its participation in repair of UVR-mediated DNA lesions. In UVR treated primary keratinocytes from bax deficient mice, the level of CPD remaining was twice that of control cells at 48 hours. Similar results were obtained using embryonic fibroblasts from bax null and bax +/+ embryos, and also with a bax deficient prostate cancer cell line in which bax expression had been restored. However, the repair rate of 6-4 PP was unaffected by the absence of bax protein in all three of above mentioned cell types. In conclusion, bax protein may have a dual function in its role as tumor suppressor in NMSC. Bax may directly or indirectly facilitate DNA repair, or programmed cell death if DNA damage is too severe, thus, in either function, preserving genomic integrity following a genotoxic event. ^
Resumo:
A prominent control on the flow over subaqueous dunes is the slope of the downstream leeside. While previous work has focused on steep (~30°), asymmetric dunes with permanent flow separation, little is known about dunes with lower lee-slope angles for which flow separation is absent or intermittent. Here, we present a laboratory investigation where we systematically varied the dune lee-slope, holding other geometric parameters and flow hydraulics constant, to explore effects on the turbulent flow field and flow resistance. Three sets of fixed dunes (lee-slopes of 10°, 20° and 30°) were separately installed in a 15 m long and 1 m wide flume and subjected to 0.20 m deep flow. Measurements consisted of high-frequency, vertical profiles collected with a Laser Doppler Velocimeter (LDV). We show that the temporal and spatial occurrence of flow separation decreases with dune lee-slope. Velocity gradients in the dune leeside depict a free shear layer downstream of the 30° dunes and a weaker shear layer closer to the bed for the 20° and 10° dunes. The decrease in velocity gradients leads to lower magnitude of turbulence production for gentle lee-slopes. Aperiodic, strong ejection events dominate the shear layer, but decrease in strength and frequency for low-angle dunes. Flow resistance of dunes decreases with lee-slope; the transition being non-linear. Over the 10°, 20° and 30° dunes, shear stress is 8%, 33% and 90 % greater than a flat bed, respectively. Our results demonstrate that dune lee-slope plays an important, but often ignored role in flow resistance.
Resumo:
Background: Pathogens are a major regulatory force for host populations, especially under stressful conditions. Elevated temperatures may enhance the development of pathogens, increase the number of transmission stages, and can negatively influence host susceptibility depending on host thermal tolerance. As a net result, this can lead to a higher prevalence of epidemics during summer months. These conditions also apply to marine ecosystems, where possible ecological impacts and the population-specific potential for evolutionary responses to changing environments and increasing disease prevalence are, however, less known. Therefore, we investigated the influence of thermal stress on the evolutionary trajectories of disease resistance in three marine populations of three-spined sticklebacks Gasterosteus aculeatus by combining the effects of elevated temperature and infection with a bacterial strain of Vibrio sp. using a common garden experiment. Results: We found that thermal stress had an impact on fish weight and especially on survival after infection after only short periods of thermal acclimation. Environmental stress reduced genetic differentiation (QST) between populations by releasing cryptic within-population variation. While life history traits displayed positive genetic correlations across environments with relatively weak genotype by environment interactions (GxE), environmental stress led to negative genetic correlations across environments in pathogen resistance. This reversal of genetic effects governing resistance is probably attributable to changing environment-dependent virulence mechanisms of the pathogen interacting differently with host genotypes, i.e. GPathogenxGHostxE or (GPathogenxE)x(GHostxE) interactions, rather than to pure host genetic effects, i.e. GHostxE interactions. Conclusion: To cope with climatic changes and the associated increase in pathogen virulence, host species require wide thermal tolerances and pathogen-resistant genotypes. The higher resistance we found for some families at elevated temperatures showed that there is evolutionary potential for resistance to Vibrio sp. in both thermal environments. The negative genetic correlation of pathogen resistance between thermal environments, on the other hand, indicates that adaptation to current conditions can be a weak predictor for performance in changing environments. The observed feedback on selective gradients exerted on life history traits may exacerbate this effect, as it can also modify the response to selection for other vital components of fitness.
Resumo:
Seaweeds are key species of the Baltic Sea benthic ecosystems. They are the substratum of numerous fouling epibionts like bryozoans and tubeworms. Several of these epibionts bear calcified structures and could be impacted by the high pCO2 events of the late summer upwellings in the Baltic nearshores. Those events are expected to increase in strength and duration with global change and ocean acidification. If calcifying epibionts are impacted by transient acidification as driven by upwelling events, their increasing prevalence could cause a shift of the fouling communities toward fleshy species. The aim of the present study was to test the sensitivity of selected seaweed macrofoulers to transient elevation of pCO2 in their natural microenvironment, i.e. the boundary layer covering the thallus surface of brown seaweeds. Fragments of the macroalga Fucus serratus bearing an epibiotic community composed of the calcifiers Spirorbis spirorbis (Annelida) and Electra pilosa (Bryozoa) and the non-calcifier Alcyonidium hirsutum (Bryozoa) were maintained for 30 days under three pCO2 conditions: natural 460±59 µatm, present-day upwelling1193±166 µatm and future upwelling 3150±446 µatm. Only the highest pCO2 caused a significant reduction of growth rates and settlement of S. spirorbis individuals. Additionally, S. spirorbis settled juveniles exhibited enhanced calcification of 40% during daylight hours compared to dark hours, possibly reflecting a day-night alternation of an acidification-modulating effect by algal photosynthesis as opposed to an acidification-enhancing effect of algal respiration. E. pilosa colonies showed significantly increased growth rates at intermediate pCO2 (1193 µatm) but no response to higher pCO2. No effect of acidification on A. hirsutum colonies growth rates was observed. The results suggest a remarkable resistance of the algal macro-epibionts to levels of acidification occurring at present day upwellings in the Baltic. Only extreme future upwelling conditions impacted the tubeworm S. spirorbis, but not the bryozoans.
Resumo:
One hypothesis for the success of invasive species is reduced pathogen burden, resulting from a release from infections or high immunological fitness (low immunopathology) of invaders. Despite of strong selection exerted on the host, the evolutionary response of invaders to newly acquired pathogens has rarely been considered. The two independent and genetically distinct invasions of the Pacific oyster Crassostrea gigas into the North Sea represent an ideal model system to study fast evolutionary responses of invasive populations. By exposing both invasion sources to ubiquitous and phylogenetically diverse pathogens (Vibrio spp.) we demonstrate that within a few generations hosts adapted to sympatric pathogen communities. However, this local adaptation only became apparent in selective environments, i.e. at elevated temperatures reflecting patterns of disease outbreaks in natural populations. Resistance against sympatric and allopatric Vibrio spp. strains was dominantly inherited in crosses between both invasion sources, resulting in an overall higher resistance of admixed individuals than pure lines. Therefore we suggest that a simple genetic resistance mechanism of the host is matched to a common virulence mechanism shared by local Vibrio strains. This combination might have facilitated a fast evolutionary response that can explain another dimension of why invasive species can be so successful in newly invaded ranges.
Resumo:
Ocean acidification, a process caused by the continuous rise of atmospheric CO2 levels, is expected to have a profound impact on marine invertebrates. Findings of the numerous studies conducted in this field indicate high variability in species responses to future ocean conditions. This study aimed at understanding the effects of long-term exposure to elevated pCO2 conditions on the performance of adult Echinometra sp. EE from the Gulf of Aqaba (Red Sea). During an 11-month incubation under high pCO2 (1,433 µatm, pHNBS 7.7) and control (435 µatm, pHNBS 8.1) conditions, we examined the urchins' somatic and gonadal growth, gametogenesis and skeletal microstructure. Somatic and gonadal growths were exhibited with no significant differences between the treatments. In addition, all urchins in the experiment completed a full reproductive cycle, typical of natural populations, with no detectable impact of increased pCO2 on the timing, duration or progression of the cycle. Furthermore, scanning electron microscopy imaging of urchin tests and spines revealed no signs of the usual observed effects of acidosis, such as skeletal dissolution, widened stereom pores or non-smoothed structures. Our results, which yielded no significant impact of the high pCO2 treatment on any of the examined processes in the urchins studied, suggest high resistance of adult Echinometra sp. EE to near future ocean acidification conditions. With respect to other findings in this area, the outcome of this study provides an example of the complicated and diverse responses of echinoids to the predicted environmental changes.
Resumo:
Powdery mildews, obligate biotrophic fungal parasites on a wide range of important crops, can be controlled by plant resistance (R) genes, but these are rapidly overcome by parasite mutants evading recognition. It is unknown how this rapid evolution occurs without apparent loss of parasite fitness. R proteins recognize avirulence (AVR) molecules from parasites in a gene-for-gene manner and trigger defense responses. We identify AVRa10 and AVRk1 of barley powdery mildew fungus, Blumeria graminis f sp hordei (Bgh), and show that they induce both cell death and naccessibility when transiently expressed in Mla10 and Mlk1 barley (Hordeum vulgare) varieties, respectively. In contrast with other reported fungal AVR genes, AVRa10 and AVRk1 encode proteins that lack secretion signal peptides and enhance infection success on susceptible host plant cells. AVRa10 and AVRk1 belong to a large family with mayor que30 paralogues in the genome of Bgh, and homologous sequences are present in other formae speciales of the fungus infecting other grasses. Our findings imply that the mildew fungus has a repertoire of AVR genes, which may function as effectors and contribute to parasite virulence. Multiple copies of related but distinct AVR effector paralogues might enable populations of Bgh to rapidly overcome host R genes while maintaining virulence.