967 resultados para Nickel-plating.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, nanoporous nickel oxide was synthesized using anionic surfactant assembly method. Structure characterizations show that this nickel oxide possesses partly-ordered mesoporous structure with nanocrystalline pore wall. The formation mechanism of wormlike nanoporous structure is ascribed to the quasi-reverse micelle system formed by ternary phases of SDS (sodium dodecyl sulfate)/urea/water. Cyclic voltammetry shows that these nickel oxide samples possess both good capacitive behavior due to its unique nanoporous structure and very high specific capacitance due to its high surface area with electrochemical activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A binucleating potentially hexadentate chelating agent containing oxygen, nitrogen and sulfur as potential donor atoms (H2ONNO) has been synthesized by condensing alpha,alpha-xylenebis(N-methyldithiocarbazate) with 2,4-pentanedione. An X-ray crystallographic structure determination shows that the Schiff base remains in its ketoimine tautomeric form with the protons attached to the imine nitrogen atoms. The reaction of the Schiff base with nickel(II) acetate in a 1:1 stoichiometry leads to the formation of a dinuclear nickel(II) complex [Ni(ONNO)](2) (ONNO2- = dianionic form of the Schiff base) containing N,O-chelated tetradentate ligands, the sulfur donors remaining uncoordinated. A single crystal X-ray structure determination of this dimer reveals that each ligand binds two low spin nickel(II) ions, bridged by a xylyl group. The nickel(II) atoms adopt a distorted square-planar geometry in a trans-N2O2 donor environment. Reaction of the Schiff base with nickel(II) acetate in the presence of excess pyridine leads to the formation of a similar dinuclear complex, [Ni(ONNO)(py)](2), but in this case comprises five coordinate high-spin Ni(II) ions with pyridine ligands occupying the axial coordination sites as revealed by X-ray crystallographic analysis. (c) 2005 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesoporous Ni(OH)(2) was synthesized using cationic surfactant as template and urea as hydrolysis-controlling agent. Mesoporous NiO with centralized pore size distribution was obtained by calcining Ni(OH)(2) at different temperatures. The BET specific surface area reaches 477.7 m(2).g(-1) for NiO calcined at 523 K. Structure characterizations indicate the polycrystalline pore wall of mesoporous nickel oxide. The pore-formation mechanism is also deduced to be quasi-reverse micelle mechanism. Cyclic voltammetry shows the good capacitive behavior of these NiO samples due to its unique mesoporous structure when using large amount of NiO to fabricate electrode. Compared with NiO prepared by dip-coating and cathodic precipitation methods, this mesoporous NiO with controlled pore structure can be used in much larger amount to fabricate the electrode and still maintains high specific capacitance and good capacitive behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The whole set of the nickel(II) complexes with no derivatized edta-type hexadentate ligands has been investigated from their structural and electronic properties. Two more complexes have been prepared in order to complete the whole set: trans(O5)-[Ni(ED3AP)]2- and trans(O5O6)-[Ni(EDA3P)]2- complexes. trans(O5) geometry has been verified crystallographically and trans(O5O6) geometry of the second complex has been predicted by the DFT theory and spectral analysis. Mutual dependance has been established between: the number of the five-membered carboxylate rings, octahedral/tetrahedral deviation of metal-ligand/nitrogen-neighbour-atom angles and charge-transfer energies (CTE) calculated by the Morokuma’s energetic decomposition analysis; energy of the absorption bands and HOMO–LUMO gap.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The object of this work was to further develop the idea introduced by Muaddi et al (1981) which enables some of the disadvantages of earlier destructive adhesion test methods to be overcome. The test is non-destructive in nature but it does need to be calibrated against a destructive method. Adhesion is determined by measuring the effect of plating on internal friction. This is achieved by determining the damping of vibrations of a resonating specimen before and after plating. The level of adhesion was considered by the above authors to influence the degree of damping. In the major portion of the research work the electrodeposited metal was Watt's nickel, which is ductile in nature and is therefore suitable for peel adhesion testing. The base metals chosen were aluminium alloys S1C and HE9 as it is relatively easy to produce varying levels of adhesion between the substrate and electrodeposited coating by choosing the appropriate process sequence. S1C alloy is the commercially pure aluminium and was used to produce good adhesion. HE9 aluminium alloy is a more difficult to plate alloy and was chosen to produce poorer adhesion. The "Modal Testing" method used for studying vibrations was investigated as a possible means of evaluating adhesion but was not successful and so research was concentrated on the "Q" meter. The method based on the use of a "Q" meter involves the principle of exciting vibrations in a sample, interrupting the driving signal and counting the number of oscillations of the freely decaying vibrations between two known preselected amplitudes of oscillations. It was not possible to reconstruct a working instrument using Muaddi's thesis (1982) as it had either a serious error or the information was incomplete. Hence a modified "Q" meter had to be designed and constructed but it was then difficult to resonate non-magnetic materials, such as aluminium, therefore, a comparison before and after plating could not be made. A new "Q" meter was then developed based on an Impulse Technique. A regulated miniature hammer was used to excite the test piece at the fundamental mode instead of an electronic hammer and test pieces were supported at the two predetermined nodal points using nylon threads. This instrument developed was not very successful at detecting changes due to good and poor pretreatments given before plating, however, it was more sensitive to changes at the surface such as room temperature oxidation. Statistical analysis of test results from untreated aluminium alloys show that the instrument is not always consistent, the variation was even bigger when readings were taken on different days. Although aluminium is said to form protective oxides at room temperature there was evidence that the aluminium surface changes continuously due to film formation, growth and breakdown. Nickel plated and zinc alloy immersion coated samples also showed variation in Q with time. In order to prove that the variations in Q were mainly due to surface oxidation, aluminium samples were lacquered and anodised Such treatments enveloped the active surfaces reacting with the environment and the Q variation with time was almost eliminated especially after hard anodising. This instrument detected major differences between different untreated aluminium substrates.Also Q values decreased progressively as coating thicknesses were increased. This instrument was also able to detect changes in Q due to heat-treatment of aluminium alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of single crystal casting techniques has led to the development of existing nickel-base superalloys to produce materials with optimum mechanical properties in the single crystal condition. As single crystals are known to be anisotropic, a study is needed to determine the general mechanical properties of these materials, and determine the effects of crystal orientation upon them. A study has been carried out to identify the effect of orientation and temperature on the creep and fatigue properties of a development single crystal superalloy, SRR 99. Creep testing and crystal rotation experiments have been made on SRR 99 and an earlier development alloy, SRR 9. Fatigue experiments at elevated temperatures have been carried out on both notched and un-notched specimens of alloy SRR 99. To aid in this analysis, several analytical techniques have been employed including Laue x-ray orientation analysis, measurement of strain by photographic methods and microstructural examination. Crystal rotation experiments have indicated that shear of 1 precipitates by lbrace111rbrace< 112> slip systems is operative during primary creep deformation at temperatures of 750oC and 850oC. The effect of orientation variation obtained by standard casting practices was not found to be significant. Creep rupture was found to be associated with multiple crack initiation from micropores. Fatigue crack initiation in un-notched specimens was found to be related to microporosity and microstructural defects. Failure was predominantly by crystallographic crack growth on lbrace111rbrace planes. The use of linear elastic fracture mechanics to describe fatigue crack propagation in alloy SRR 99 was found to be acceptable at temperatures up to 850oC. Variation of temperature, frequency and crystal orientation was found to have only moderate effect upon crack propagation rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of variation in weld crack susceptibility caused by small variations in alloy and impurity elements for the 70-30 cupro-nickel alloy has been investigated. Both wrought and cast versions of the alloy have been studied, the main techniques employed being the Varestraint test and weld thermal simulation. In the wrought alloys, cracking has been found to occur mainly in the weld metal, whilst in the cast alloys cracking is extensive in both weld metal and heat affected zone. The previously reported effects of certain impurities (P,S,Si) in increasing cracking have been confirmed, and it has also been shown that Ti and Zr may both have a crack promoting effect at levels commonly found in cupro-nickels, whilst C can interact with several of the other elements investigated to produce a beneficial effect. The testing carried out using the weld thermal simulator has shown that a relationship does exist between hot ductility and weld cracking. In particular, the absence of the peak in ductility in the range 1100°C-900°C on cooling from a temperature near to the solidus is indicative of a highly crack susceptible alloy. Principal practical implications of the investigation concern the relationship of weld metal cracking to alloy composition, especially the level of certain impurities. It would appear that the upper limits permitted by the alloy specifications are unrealistically high. The introduction of lower impurity limits would alleviate the current problems of variability in resistance to cracking during welding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of cobalt molybdenum and cobalt tungsten brush plating electrolytes is described. Their optimum compositions and operating conditions for commercial applications have been determined. The effects of composition, pH, applied voltage, stylus speed and pressure upon deposit composition and efficiency have been investigated. Transmission and Scanning Electron Microscopy have been employed to study the cobalt alloy deposits produced. Evaluation of the wear resistant properties of the cobalt alloys developed in this work was carried out in the laboratory using a pin and disc technique and a simulated hot forging test, and by industrial trials involving the "on site" plating of hot forging dies and cold pressing tools. It was concluded that the electrolytes developed in tl1is work enabled cobalt alloys containing 6% Mo or 8% W to be deposited at 17-20V. Brush plated cobalt deposits possessed a mixed CPU and FCC crystallographic structure at room temperature. The application of 13µm of either of the cobalt alloys resulted in improved wear performance in both pin and disc and simulated hot forging tests. The results of the industrial trials indicated that by the use of these alloys, the life of hot forging dies may be increased by 20-100%. A commercial forging organisation is using electrolytes developed in this work to coat dies prior to forging nimonic alloys. Reductions in forging temperature and improved forging qualities have been reported. Cold pressing tools coated with the alloys showed a reduced tendency to "pick-up" and scoring of the pressed panels. Reports of a reduced need for lubrication of panels before pressing have also been received.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deposition efficiencies of a number of electroless nickel and cobalt plating solutions were studied and in the case of nickel compared with a commercial plating solution Nifoss 80. At the optimum plating conditions (92ºC and pH 4.5) Nifoss 80 produced nickel layers most efficiently, the alkaline cobalt solution operated most efficiently at 90ºC and pH 9. The methods of producing compostte layers containing 2-3 µm carbide particles and chromium powder is described. Nickel and cobalt layers containing approximately 27% carbide particles, or 40% (Ni) and 30% (Co) chromium particles by volume were obtained. This value is independent of the particle concentration in the plating solution within the range (20~200 g/l). Hardness of the nickel. as deposited was 515 Hv, this was increased to a maximum of 1155 Hv by heat treatment at 200ºC for 5 hours in vacuum. Incorporation. of .chromium carbide particles resulted in a maximum hardness of 1225 Hv after heating at 500ºC for 5 hours in vacuum and chromium particles resulted in a maximum hardness of 16S0 Hv after heat treatment at 400ºC for 2 hours in vacuum. Similarly the hardness of cobalt as deposited was 600 Hv, this was increased to a maximum of 1300 Hv after heat treatment at 400ºC for 1 hour. Incorporation of chromium carbide particles resulted jn a maximum hardness of 1405 Hv after heating at 400ºC for 5 hours in vacuum and chromium particles resulted in a maximum hardness of 1440 Hv after. heat treating for 2 hours at 400ºC in vacuum. The structure of the deposits was studied by optical and scanning electron microscopy. The wear rate and coefficient of friction was determined by a pin and disc method. Wear rate and coefficient of friction decreased with increase in hardness. The wear resistance of the materials was also determined using a simulated forging test. Dies made of standard die steel were coated and the wear rates of the layers as deposited and after heat treatment were compared with those of uncoated tools. The wear resistance generally increased with hardness, it was 50-75% more than the uncoated die steel. Acetic acid salt spray test and outdoor exposure for six months was used to study the corrosion behaviour of the deposits and potentiodynamic curves plotted to find their corrosion potential. Nickel deposit exhibited less staining than carbide composite deposits and nickel-chromium deposits had the most noble corrosion potential.