955 resultados para Nickel hyperaccumulation
Resumo:
Catalytic CO2 reforming of biomass tar on palygorskite-supported nickel catalysts using toluene as a model compound of biomass tar was investigated. The experiments were performed in a bench scale installation a fixed bed reactor. All experiments were carried out at 650, 750, 800 °C and atmospheric pressure. The effect of Ni loading, reaction temperature and concentration of CO2 on H2 yield and carbon deposit was investigated. Ni/Palygorskite (Ni/PG) catalysts with Ni/PG ratios of 0%, 2%, 5% and 8% were tested, the last two show the best performance. H2 yield and carbon deposit diminished with the increase of reaction temperature, Ni loading, and CO2 concentration.
Resumo:
The characteristics of dust particles deposited during the 2009 dust storm in the Gold Coast and Brisbane regions of Australia are discussed in this paper. The study outcomes provide important knowledge in relation to the potential impacts of dust storm related pollution on ecosystem health in the context that the frequency of dust storms is predicted to increase due to anthropogenic desert surface modifications and climate change impacts. The investigated dust storm contributed a large fraction of fine particles to the environment with an increased amount of total suspended solids, compared to dry deposition under ambient conditions. Although the dust storm passed over forested areas, the organic carbon content in the dust was relatively low. The primary metals present in the dust storm deposition were aluminium, iron and manganese, which are common soil minerals in Australia. The dust storm deposition did not contain significant loads of nickel, cadmium, copper and lead, which are commonly present in the urban environment. Furthermore, the comparison between the ambient and dust storm chromium and zinc loads suggested that these metals were contributed to the dust storm by local anthropogenic sources. The potential ecosystem health impacts of the 2009 dust storm include, increased fine solids deposition on ground surfaces resulting in an enhanced capacity to adsorb toxic pollutants as well as increased aluminium, iron and manganese loads. In contrast, the ecosystem health impacts related to organic carbon and other metals from dust storm atmospheric deposition are not considered to be significant.
Resumo:
In this paper, the influence of the impact energy on the initial fabrication of thin films formed by low energy cluster deposition was investigated by molecular dynamics simulation of All 3 clusters depositing on Ni(0 0 1) substrate. In the case of soft-landing, (0.01 eV/atom), clusters are rearranged from I-h symmetry into fcc-like clusters on the surface. Then they aggregate each other, which result in thin film growing in 3D island mode. While, growth will be in layer-by-layer mode at the impact energy of a few electron volt due to the transient lateral spread of cluster atoms induced by dense collision cascade. This effect has been traced to collision cascade inside the cluster. which is enhanced by collision with a hard Ni substrate. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Carbon dioxide reforming of methane produces synthesis gas with a low hydrogen to carbon monoxide ratio, which is desirable for many industrial synthesis processes. This reaction also has very important environmental implications since both methane and carbon dioxide contribute to the greenhouse effect. Converting these gases into a valuable feedstock may significantly reduce the atmospheric emissions of CO2 and CH4. In this paper, we present a comprehensive review on the thermodynamics, catalyst selection and activity, reaction mechanism, and kinetics of this important reaction. Recently, research has centered on the development of catalysts and the feasible applications of this reaction in industry. Group VIII metals supported on oxides are found to be effective for this reason. However, carbon deposition causing catalyst deactivation is the major problem inhibiting the industrial application of the CO2/CH4 reaction. Ni-based catalysts impregnated on certain supports show carbon-free operation and thus attract much attention. To develop an effective catalyst for CO2 reforming of CH4 and accelerate the commercial application of the reaction, the following are identified to be the most important areas for future work: (1) selection of metal and support and studying the effect of their interaction on catalyst activity; (2) the effect of different promoter on catalyst activity; (3) the reaction mechanism and kinetics; and (4) pilot reactor performance and scale-up operation.
Resumo:
The reaction of pyrrole and thiophene monomers with copper- or nickel-exchanged mordenite has been investigated using X-ray photoelectron (XPS) and photoacoustic infrared (PAIRS) spectroscopies. Because of the differing oxidising powers of the cations studied, polymerisation occurred only with copper-exchanged mordenite. PAIRS and XPS data indicated that both polypyrrole and polythiophene were partially oxidised when synthesised within the zeolite structure. IR spectra of polythiophene and polythiophene and polypyrrole showed intense bands typical of ring vibrations which could couple to the large dipole change induced by charges moving along the polythiophene chain. In addition it was noted that only vibrations typical of oxidised polymer structures were recorded, suggesting that the charge carrier was located within these segments. Furthermore, N 1s spectra contained a high binding energy peak at 402.5 eV which was attributed to a positively charged nitrogen species, in agreement with IR data. Significantly, C 1s spectra confirmed that molecular wires were formed within the confines of the zeolite lattice. Depth-profiling experiments suggested that polypyrrole was distributed throughout the entire zeolite host. By contrast, polythiophene may have been restricted to the uppermost zeolite channels owing to the ability of sulfur species to bond to CuI sites [produced by reduction of copper(II) ions during the polymerisation process], thus obstructing movement along the channels.
Resumo:
The present invention is directed to catalysts for the conversion of oxides of carbon to methane and/or other hydrocarbons and to precursors of such catalysts. The catalyst precursors include one or more refractory oxides selected from the group consisting of rare earth oxides and rare earth contg. perovskites, the precursor including nickel or nickel cations sufficient for a catalyst obtainable by reducing the precursor to be capable of at least partially reducing an oxide of carbon to a hydrocarbon product. Processes for the prepn. of such catalysts and catalyst precursors are also disclosed, as are processes for the conversion of oxides of carbon to methane and/or other hydrocarbons. [on SciFinder(R)]
Resumo:
This paper addresses contemporary neoliberal mobilisations of community undertaken by private corporations. It does so by examining the ways in which the mining industry, empowered through the legitimising framework of corporate social responsibility, is increasingly and profoundly involved in shaping the meaning, practice, and experience of ‘local community’. We draw on a substantial Australian case study, consisting of interviews and document analysis, as a means to examine ‘community-engagement’ practices undertaken by BHP Billiton’s Ravensthorpe Nickel Operation in the Shire of Ravensthorpe in rural Australia. This engagement, we argue, as a process of deepening neoliberalisation simultaneously defines and transforms local community according to the logic of global capital. As such, this study has implications for critical understandings of the intersections among corporate social responsibility, neoliberalisation, community, and capital.
Resumo:
The study investigated the influence of traffic and land use parameters on metal build-up on urban road surfaces. Mathematical relationships were developed to predict metals originating from fuel combustion and vehicle wear. The analysis undertaken found that nickel and chromium originate from exhaust emissions, lead, copper and zinc from vehicle wear, cadmium from both exhaust and wear and manganese from geogenic sources. Land use does not demonstrate a clear pattern in relation to the metal build-up process, though its inherent characteristics such as traffic activities exert influence. The equation derived for fuel related metal load has high cross-validated coefficient of determination (Q2) and low Standard Error of Cross-Validation (SECV) values indicates that the model is reliable, while the equation derived for wear-related metal load has low Q2 and high SECV values suggesting its use only in preliminary investigations. Relative Prediction Error values for both equations are considered to be well within the error limits for a complex system such as an urban road surface. These equations will be beneficial for developing reliable stormwater treatment strategies in urban areas which specifically focus on mitigation of metal pollution.
Resumo:
Urban road dust comprises of a range of potentially toxic metal elements and plays a critical role in degrading urban receiving water quality. Hence, assessing the metal composition and concentration in urban road dust is a high priority. This study investigated the variability of metal composition and concentrations in road dust in 4 different urban land uses in Gold Coast, Australia. Samples from 16 road sites were collected and tested for selected 12 metal species. The data set was analyzed using both univariate and multivariate techniques. Outcomes of the data analysis revealed that the metal concentrations in road dust differ considerably within and between different land uses. Iron, aluminum, magnesium and zinc are the most abundant in urban land uses. It was also noted that metal species such as titanium, nickel, copper and zinc have the highest concentrations in industrial land use. The study outcomes revealed that soil and traffic related sources as key sources of metals deposited on road surfaces.
Resumo:
A set of resistance-type strain sensors has been fabricated from metal-coated carbon nanofiller (CNF)/epoxy composites. Two nanofillers, i.e., multi-walled carbon nanotubes and vapor growth carbon fibers (VGCFs) with nickel, copper and silver coatings were used. The ultrahigh strain sensitivity was observed in these novel sensors as compared to the sensors made from the CNFs without metal-coating, and conventional strain gauges. In terms of gauge factor, the sensor made of VGCFs with silver coating is estimated to be 155, which is around 80 times higher than that in a metal-foil strain gauge. The possible mechanism responsible for the high sensitivity and its dependence with the networks of the CNFs with and without metal-coating and the geometries of the CNFs were thoroughly investigated.
Resumo:
The behavior of the platinum group elements (PGE) and Re in felsic magmas is poorly understood due to scarcity of data. We report the concentrations of Ni, Cu, Re, and PGE in the compositionally diverse Boggy Plain zoned pluton (BPZP), which shows a variation of rock type from gabbro through granodiorite and granite to aplite with a SiO2 range from 52 to 74 wt %. In addition, major silicate and oxide minerals were analyzed for Ni, Cu, and Re, and a systematic sulfide study was carried out to investigate the role of silicate, oxide, and sulfide minerals on chalcophile element geochemistry of the BPZP. Mass balance calculation shows that the whole rock Cu budget hosted by silicate and oxide minerals is <13 wt % and that Cu is dominantly located in sulfide phases, whereas most of the whole rock Ni budget (>70 wt %) is held in major silicate and oxide minerals. Rhenium is dominantly hosted by magnetite and ilmenite. Ovoid-shaped sulfide blebs occur at the boundary between pyroxene phenocrysts and neighboring interstitial phases or within interstitial minerals in the gabbro and the granodiorite. The blebs are composed of pyrrhotite, pyrite, chalcopyrite, and S-bearing Fe-oxide, which contain total trace metals (Co, Ni, Cu, Ag, Pb) up to ~16 wt %. The mineral assemblage, occurrence, shape, and composition of the sulfide blebs are a typical of magmatic sulfide. PGE concentrations in the BPZP vary by more than two orders of magnitude from gabbro (2.7–7.8 ppb Pd, 0.025–0.116 ppb Ir) to aplite (0.05 ppb Pd, 0.001 ppb Ir). Nickel, Cu, Re, and PGE concentrations are positively correlated with MgO in all the rock types although there is a clear discontinuity between the granodiorite and the granite in the trends for Ni, Rh, and Ir when plotted against MgO. Cu/Pd values gradually increase from 6,100 to 52,600 as the MgO content decreases. The sulfide petrology and chalcophile element geochemistry of the BPZP show that sulfide saturation occurred in the late gabbroic stage of magma differentiation. Segregation and distribution of these sulfide blebs controlled Cu and PGE variations within the BPZP rocks although the magma of each rock type may have experienced a different magma evolution history in terms of crustal assimilation and crystal fractionation. The sulfide melt locked in the cumulate rocks must have sequestered a significant portion of the chalcophile elements, which restricted the availability of these metals to magmatic-hydrothermal ore fluids. Therefore, we suggest that the roof rocks that overlay the BPZP were not prospective for magmatic-hydrothermal Cu, Au, or Cu–Au deposits.
Resumo:
This chapter examines local community experiences, understandings and changes attending the presence of mining activity, in particular as occurred in the Shire of Ravensthorpe in the South West of Western Australia (WA). It does so by drawing on an extensive ethnographic study spanning the development, opening, and closure of BHP Billiton’s Ravensthorpe Nickel Operation (RNO). Given that the negative consequences of mining activity are most evident and complex at the local level, it is crucial that we understand and address how communities (and the individuals and families who are both part of and are shaped by communities) experience the impacts of mining. Though difficult to measure, social and cultural dimensions of mining at the local scale, as this chapter demonstrates, are central to our understanding of mining as a curse or cure.
Resumo:
Historically, class has been a key concern in studies of resource affected communities (e.g., Williamson 1982, Warwick and Littlejohn 1992). While work continues, particularly in Britain, today it reflects the rationalization of the British mining sector, and thus focuses largely on mining heritage (e.g., Strangleman et al. 1999, Dicks 2008). In contrast, this chapter examines class relations as manifest in a contemporary setting in rural Australia. This site, the Ravensthorpe Shire in the south west of Western Australia, relied largely on agriculture until 2004 when BHP Billiton commenced construction of a nickel mine in the area. This affected the entire Shire as well as the two rural communities of Ravensthorpe and Hopetoun. The mine, which was officially opened in June 2008, is one of a large number of new mineral and energy developments being established in non metropolitan areas of the country as high international demand for resources fuels significant growth in the sector. In a single six month period in 2009, for example, 15 major minerals and energy projects were completed across the nation and a further 74 projects were at advanced stages (Australian Bureau of Agricultural Economics 2009). A number of these were, as was the case in Ravensthorpe, in what had been traditionally agricultural communities.
Resumo:
The results of the combined experimental and numerical study suggest that nonequilibrium plasma-driven self-organization leads to better size and positional uniformity of nickel nanodot arrays on a Si(100) surface compared with neutral gas-based processes under similar conditions. This phenomenon is explained by introducing the absorption zone patterns, whose areas relative to the small nanodot sizes become larger when the surface is charged. Our results suggest that strongly nonequilibrium and higher-complexity plasma systems can be used to improve ordering and size uniformity in nanodot arrays of various materials, a common and seemingly irresolvable problem in self-organized systems of small nanoparticles. © 2008 American Institute of Physics.
Resumo:
The self-organized growth of uniform carbon nanocone arrays using low-temperature non-equilibrium Ar + H 2 + CH 4 plasma-enhanced chemical vapor deposition (PECVD) is studied. The experiment shows that size-, shape-, and position-uniform carbon nanocone arrays can develop even from non-uniformly fragmented discontinuous nickel catalyst films. A three-stage scenario is proposed where the primary nanocones grow on large catalyst particles during the first stage, and the secondary nanocones are formed between the primary ones at the second stage. Finally, plasma-related effects lead to preferential growth of the secondary nanocones and eventually a uniform nanopattern is formed. This does not happen in a CVD process with the same gas feedstock and surface temperature. The proposed three-stage growth scenario is supported by the numerical experiment which generates nanocone arrays very similar to the experimentally synthesized nanopatterns. The self-organization process is explained in terms of re-distribution of surface and volumetric fluxes of plasma-generated species in a developing nanocone array. Our results suggest that plasma-related self-organization effects can significantly reduce the non-uniformity of carbon nanostructure arrays which commonly arises from imperfections in fragmented Ni-based catalyst films.