924 resultados para Ni-Co mixed oxides
Resumo:
The structural analogy between Ni-doped greigite minerals (Fe3S4) and the (Fe,Ni)S clusters present in biological enzymes has led to suggestions that these minerals could have acted as catalysts for the origin of life. However, little is known about the distribution and stability of Ni dopants in the greigite structure. We present here a theoretical investigation of mixed thiospinels (Fe1
Resumo:
The incorporation of cobalt in mixed metal carbonates is a possible route to the immobilization of this toxic element in the environment. However, the thermodynamics of (Ca,Co)CO3 solid solutions are still unclear due to conflicting data from experiment and from the observation of natural ocurrences. We report here the results of a computer simulation study of the mixing of calcite (CaCO3) and spherocobaltite (CoCO3), using density functional theory calculations. Our simulations suggest that previously proposed thermodynamic models, based only on the range of observed compositions, significantly overestimate the solubility between the two solids and therefore underestimate the extension of the miscibility gap under ambient conditions. The enthalpy of mixing of the disordered solid solution is strongly positive and moderately asymmetric: calcium incorporation in spherocobaltite is more endothermic than cobalt incorporation in calcite. Ordering of the impurities in (0001) layers is energetically favourable with respect to the disordered solid solution at low temperatures and intermediate compositions, but the ordered phase is still unstable to demixing. We calculate the solvus and spinodal lines in the phase diagram using a sub-regular solution model, and conclude that many Ca1-xCoxCO3 mineral solid solutions (with observed compositions of up to x=0.027, and above x=0.93) are metastable with respect to phase separation. We also calculate solid/aqueous distribution coefficients to evaluate the effect of the strong non-ideality of mixing on the equilibrium with aqueous solution, showing that the thermodynamically-driven incorporation of cobalt in calcite (and of calcium in spherocobaltite) is always very low, regardless of the Co/Ca ratio of the aqueous environment.
Resumo:
Polycrystalline Ni nanowires with different diameters were electrodeposited in nanoporous anodized alumina membranes. First-Order Reversal Curves (FORCs) were measured and FORC distributions were calculated. They clearly showed an asymmetric behavior with a strong maximum at negative interaction fields, evidencing the dominant demagnetizing interactions which depend on the geometry of the nanowires. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Ancient potteries usually are made of the local clay material, which contains relatively high concentration of iron. The powdered samples are usually quite black, due to magnetite, and, although they can be used for thermoluminescene (TL) dating, it is easiest to obtain better TL reading when clearest natural or pre-treated sample is used. For electron paramagnetic resonance (EPR) measurements, the huge signal due to iron spin-spin interaction, promotes an intense interference overlapping any other signal in this range. Sample dating is obtained by dividing the radiation dose, determined by the concentration of paramagnetic species generated by irradiation, by the natural dose so as a consequence, EPR dating cannot be used, since iron signal do not depend on radiation dose. In some cases, the density separation method using hydrated solution of sodium polytungstate [Na(G)(H(2)W(12)O(40))center dot H(2)O] becomes useful. However, the sodium polytungstate is very expensive in Brazil: hence an alternative method for eliminating this interference is proposed. A chemical process to eliminate about 90% of magnetite was developed. A sample of powdered ancient pottery was treated in a mixture (3:1:1) of HCI, HNO(3) and H(2)O(2) for 4 h. After that, it was washed several times in distilled water to remove all acid matrixes. The original black sample becomes somewhat clearer. The resulting material was analyzed by plasma mass spectrometry (ICP-MS), with the result that the iron content is reduced by a factor of about 9. In EPR measurements a non-treated natural ceramic sample shows a broad spin-spin interaction signal, the chemically treated sample presents a narrow signal in g= 2.00 region, possibly due to a radical of (SiO(3))(3-), mixed with signal of remaining iron [M. lkeya, New Applications of Electron Spin Resonance, World Scientific, Singapore, 1993, p. 285]. This signal increases in intensity under -gamma-irradiation. However, still due to iron influence, the additive method yielded too old age-value. Since annealing at 300 degrees C, Toyoda and Ikeya IS. Toyoda, M. Ikeya, Geochem. J. 25 (1991) 427-445] states that E `(1)-signal with maximum intensity is obtained, while annealing at 400 degrees C E`(1)-signal is completely eliminated, the subtraction of the second one from 300 degrees C heat-treated sample isolate E`(1)-like signal. Since this is radiation dose-dependent, we show that now EPR dating becomes possible. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
LaFe(1-x)CO(x)O(3) perovskites were conventionally or nanocasting synthesized. The nanocasting involved the preparation of a micro-mesoporous carbon mould using a Silica Aerosil 200 and a carbon source. Then, perovskites were carbon cast at 800 degrees C. The solids were characterized by XRD, N(2) sorption, FTIR, TGA/DTG, SEM and TEM. N(2) sorption evidenced that the nanocast perovskites did not show significant intraparticle porosity in despite of their enhanced (30-50 m(2)/g) specific surface area (SSA). Nevertheless, TEM images, XRD and Rietveld refinement data showed that the solids are constituted at least by 97 wt% of perovskite phase and by agglomerates smaller than 100 nm constituted by crystallites of about 6 nm. TGA/DTG results demonstrated carbon oxidation during the perovskite formation, thus eliminating the template effect and facilitating the occurrence of sintering, which limited the SSA increase. The nanocast perovskites were more active in the reduction of NO than the uncast ones, behavior that was attributed to the increase in their SSA that allows the exposure of a higher number of accessible active sites. However, the perovskite composition and the presence of impurities can reduce the effect of the improvement of the textural properties. The nanocast perovskites also showed high thermal and catalytic stability, corroborating their potential as catalysts for the studied reaction. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A 72 cm long core was collected from Lagoa da Viracao (LV), a small poind in the Fernando de Noronha island, northern Brazil. Sediments from the lower section of the core (20-72 cm depth) contain essentially mineral matter, while in the upper section (0-20 cm depth) mineral matter is mixed with organic matter. Lithogenic conservative elements - Si, Al, Fe, Ti, Co, Cr, Cu, Ba, Ga, Hf, Nb, Ni, Y, V, Zn, Zr and REE - exhibit remarkably constant values throughout the core, with concentrations similar to those of the bedrock. The vertical distribution of soluble elements - Ca, Mg, Na, K, P, Mn and Sr - is also homogeneous, but these elements are systematically depleted in relation to the bedrock. LOI, TOC, Br, Se, Hg and Pb, although showing nearly constant values in the lower section of the core, are significantly enriched in the upper section. The concentration profiles of Br and Se suggest that they may be accounted for by natural processes, related to the slight affinity of these elements for organic matter. On the other hand, the elevated levels of Hg and Pb in recent sediments may be explained by their long-range atmospheric transport and deposition. Furthermore, the isotopic composition of Pb clearly indicates that anthropogenic sources contributed to the Pb burden in the uppermost pond sediments.
Resumo:
Ni(II)GGH (GGH, glycylglycyl-L-histidine) reacts rapidly with S(IV), in air-saturated solution, to produce Ni(III)GGH. A mechanism is proposed where Ni(III) oxidizes SO(3)(2-) to SO(3)(center dot-), which reacts with dissolved oxygen to produce SO(5)(center dot-), initiating radical chain reactions. DNA strand breaks and 8-oxo-7,8-dihydro-20-deoxyguanosine (8-oxodGuo) formation were observed in air-saturated solutions containing micromolar concentrations of nickel(II) and S(IV). The efficacies of melatonin, (-)-epigallocatechin-gallate (from green tea), resveratrol, tannic, and ascorbic acids in terms of their inhibitory activities of DNA strand breaks and 8-oxodGuo formation were evaluated.
Resumo:
The catalytic activity of Ni/CeO(2)-Al(2)O(3) catalysts modified with noble metals (Pt, Ir, Pd and Ru) was investigated for the steam reform of ethanol and glycerol. The catalysts were characterized by the following techniques: Energy-dispersive X-ray, BET, X-ray diffraction, temperature-programmed reduction, UV-vis diffuse reflectance spectroscopy and X-ray absorption near edge structure (XANES). The results showed that the formation of inactive nickel aluminate was prevented by the presence of CeO(2) dispersed on alumina. The promoting effect of noble metals included a decrease in the reduction temperatures of NiO species interacting with the support, due to the hydrogen spillover effect. It was seen that the addition of noble metal stabilized the Ni sites in the reduced state along the reforming reaction, increasing the ethanol and glycerol conversions and decreasing the coke formation. The higher catalytic performance for the ethanol steam reforming at 600 degrees C and glycerol steam reforming was obtained for the NiPd and NiPt catalysts, respectively, which presented an effluent gaseous mixture with the highest H(2) yield with reasonably low amounts of CO. (c) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
The oxygen reduction reaction (ORR) was investigated on carbon-supported Pt-Co nanoparticle electrocatalysts with low Pt content in alkaline electrolyte. High resolution transmission electron microscopy, In situ X-ray absorption spectroscopy, and X-ray diffraction analysis evidenced large structural differences of the Pt-Co particles depending oil the route of the catalyst synthesis. It was demonstrated that although the Pt-Co materials contain low amounts of Pt, they show very good activities when the particles are formed by a Pt-rich shell and a Pt-Co core, which was obtained after submitting the electrocatalyst to a potential cycling in acid electrolyte. The high activity of this material was due to a major contribution from its higher surface area, as a result of the leaching of the Co atoms from the particle Surface. Furthermore, its high activity was ascribed to a minor contribution from the electronic interaction of the Pt atoms, at the particle surface, and the Co atoms located in the beneath layer, lowering the Pt cl-band center. As these electrocatalysts presented high activity for the ORR with low Pt content, the cost of the fuel cell cathodes could be lowered considerably. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper describes an investigation on CuO and CuO-ZnO catalysts supported on CeO(2) and CeO(2)-La(2)O(3) oxides, which were designed for the low temperature water-gas shift reaction (WGSR). Bulk catalysts were prepared by co-precipitation of metal nitrates and characterized by energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), surface area (by the BET method), X-ray photoelectron spectroscopy (XPS), and in situ X-ray absorption near edge structure (XANES). The catalysts` activities were tested in the forward WGSR, and the CuO/CeO(2) catalyst presented the best catalytic performance. The reasons for this are twofold: (1) the presence of Zn inhibits the interaction between Cu and Ce ions, and (2) lanthanum oxide forms a solid solution with cerium oxide, which will cause a decrease in the surface area of the catalysts. Also the CuO/CeO(2) catalyst presented the highest Cu content on the surface, which could influence its catalytic behavior. Additionally, the Cu and Cu(1+) species could influence the catalytic activity via a reduction-oxidation mechanism, corroborating to the best catalytic performance of the Cu/Ce catalyst. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Supported nickel catalysts of composition Ni/Y(2)O(3)-ZrO(2) were synthesized in one step by the polymerization method and compared with a nickel catalyst prepared by wet impregnation. Stronger interactions were observed in the formed catalysts between NiO species and the oxygen vacancies of the Y(2)O(3)-ZrO(2) in the catalysts made by polymerization, and these were attributed to less agglomeration of the NiO during the synthesis of the catalysts in one step. The dry reforming of ethanol was catalyzed with a maximum CO(2) conversion of 61% on the 5NiYZ catalyst at 800 degrees C, representing a better response than for the catalyst of the same composition prepared by wet impregnation. (C) 2009 Published by Elsevier B.V.
Resumo:
Carbon-supported platinum is commonly used as an anode electrocatalyst in low-temperature fuel cells fueled with methanol. The cost of Pt and the limited world supply are significant barriers for the widespread use of this type of fuel cell. Moreover, Pt used as anode material is readily poisoned by carbon monoxide produced as a byproduct of the alcohol oxidation. Although improvements in the catalytic performance for methanol oxidation were attained using Pt-Ru alloys, the state-of-the-art Pt-Ru catalyst needs further improvement because of relatively low catalytic activity and the high cost of noble Pt and Ru. For these reasons, the development of highly efficient ternary platinum-based catalysts is an important challenge. Thus, various compositions of ternary Pt(x)-(RuO(2)-M)(1-x)/C composites (M = CeO(2), MoO(3), or PbO(x)) were developed and further investigated as catalysts for the methanol electro-oxidation reaction. The characterization carried out by X-ray diffraction, energy-dispersive X-ray analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry point out that the different metallic oxides were successfully deposited on the Pt/C, producing small and well-controlled nanoparticles in the range of 2.8-4.2 nm. Electrochemical experiments demonstrated that the Pt(0.50)(RuO(2)-CeO(2))(0.50)/C composite displays the higher catalytic activity toward the methanol oxidation reaction (lowest onset potential of 207 mV and current densities taken at 450 mV, which are 140 times higher than those at commercial Pt/C), followed by the Pt(0.75)(RuO(2)-MoO(3))(0.25)/C composite. In addition, both of these composites produced low quantities of formic acid and formaldehyde when compared to a commercially available Pt(0.75)-Ru(0.25)/C composite (from E-Tek, Inc.), suggesting that the oxidation of methanol occurs mainly by a pathway that produces CO(2) forming the intermediary CO(ads).
Resumo:
Mixed-ligand complexes of technetium(V) or rhenium(V) containing tridentate N-[(dialkylamino)(thiocarbonyl)]benzamidine (H(2)L(1)) and bidentate N,N-dialkyl-N`-benzoylthiourea (HL(2)) ligands were formed in high yields when (NBu(4))[MOCl(4)] (M = Tc or Re) or [ReOCl(3)(PPh(3))(2)] was treated with mixtures of the proligands. Other approaches for the synthesis of the products are reactions of [MOCl(L(1))] complexes with HL(2) or compounds of the-composition [ReOCl(2)(PPh(3))(L(2))] with H(2)L(1). The resulting air-stable [MO(L(1))(L(2))] complexes possess potential for the development of metal-based radiopharmaceuticals. [TcO(L(1))(L(2))] complexes are readily reduced by PPh3 with formation of [Tc(L(1))(L(2))(PPh(3))]. The resulting Tc(III) complexes undergo two almost-reversible oxidation steps corresponding to one-electron transfer processes. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)
Resumo:
São apresentados os resultados dos estudos petrográfico e geoquímico dos carvões da jazida de Chico Lomã, localizada no município de Santo Antônio da Patrulha, no nordeste do Rio Grande da Sul, situada entre as jazidas de Morungava (limite oeste) e Santa Terezinha (limite leste). Na sondagem estudada - 02-TG-88-RS - foram identificadas 7 camadas e 5 leitos de carvão. Entre estes, apenas as camadas E e F apresentam suficiente extensão lateral para serem consideradas economicamente exploráveis. Os carvões são ricos em matéria mineral, constituída, principalmente, de argila. O grupo maceral mais freqüente é o da vitrinita. No que diz respeito aos microlitotipos, ocorre, em geral, o predomínio de carbominerita. Foram identificadas 3 associações de microlitotipos, determinando a existência das seguintes faciologias: ambiente telmático (predomínio de vitrita-clarita), limo-telmático (predomínio de carbargilita-vitrita) e límnico (predomínio de carbargilita-durita-trimacerita). Os carvões apresentam rank que varia de betuminoso alto volátil C/sub-betuminoso A a betuminoso alto volátil A (ASTM). A utilização tecnológica dos carvões das camadas E e F, na siderurgia, pode ser sugerida, mesmo considerando-se seu elevado teor em cinza, desde que sejam submetidos a processos de beneficiamento. Em relação aos argilo-minerais, constatou-se a presença de caolinita, aparentemente relacionada ao conteúdo da matéria orgânica, e do interestratificado ilita-montmorilonita, provavelmente de origem detrítica. Foram identificados 3 grupos de elementos traços : associados à fração orgânica (Co, Ge, Ni, V e Zr), elementos intermediários (Cr, Cu e Sr) e associados à fração inorgânica (B, Ba e Ga). Observou-se, também, que os elementos do primeiro grupo, de maneira geral, se enriquecem nos litotipos com maior conteúdo de vitrênio, ao contrário dos elementos do último grupo que tendem a se enriquecer no carvão fosco e nos folhelhos. Os estudos realizados indicam um paleoambiente de água doce, no qual, provavelmente, tenham ocorrido pequenas ingressões marinhas entre as fases de formação de turfa.
Resumo:
Esta pesquisa teve como proposta avaliar histopatologicamente,os efeitos do tratamento de perfurações radiculares, empregando medicamentos à base de corticóide e antibiótico como curativo, seu posterior preenchimento com uma pasta aquosa de hidróxido de cálcio e iodofórmio e, também, a utilização dessa pasta durante todo o período experimental. Para tanto, foram utilizados os segundos e terceiros pré-molares superiores e os terceiros e quartos inferiores de 6 cães adultos jovens. Nestes dentes, sob isolamento absoluto do campo operatório com dique de borracha, efetuou-se a obturação dos canais radiculares, e após a limpeza da câmara pulpar, procedeu-se a perfuração radicular na raiz mesial para a região interradicular e lateralmente disposta à furca. Como curativo foram utilizados o Rifocort e o Otosporin, que permaneciam por 7 dias no trajeto perfurado e em contato com os tecidos periodontais da região. Passado esse período, o curativo era substituído por uma pasta aquosa de hidróxido de cálcio e iodofórmio e todos os dentes eram radiografados antes e depois da substituição do material. Decorridos 90 dias, os animais foram sacrificados por meio de perfusão e as peças removidas, radiografadas e preparadas para se obter cortes histológicos, os quais foram corados pela hematoxilina e eosina e pelo tricrômico de Masson. Pelos resultados obtidos neste trabalho, é válido concluir que: a) as perfurações seladas imediatamente com a pasta aquosa de hidróxido de cálcio e iodofórmio apresentaram melhores resultados no exame histológico, onde ficaram evidenciadas menor quantidade do processo inflamatório e maior hiper-plasia de cemento; b) não houve diferença significante entre as perfurações tratadas com os medicamentos Rifocort e Otosporin; c) os dentes cujas perfurações permaneceram sem nenhum tratamento durante 7 dias, exibiram uma resposta menos favorável e sem evidência de reparação na área perfurada; d) as imagens radiográficas, no que se refere á extensão de destruição do tecido ósseo alveolar, foram compatfveis com os quadros histológicos, não havendo evidências, porém, da neoformação do tecido cementário.