987 resultados para Nevada Bar Association
Resumo:
Competition theory predicts that local communities should consist of species that are more dissimilar than expected by chance. We find a strikingly different pattern in a multicontinent data set (55 presence-absence matrices from 24 locations) on the composition of mixed-species bird flocks, which are important sub-units of local bird communities the world over. By using null models and randomization tests followed by meta-analysis, we find the association strengths of species in flocks to be strongly related to similarity in body size and foraging behavior and higher for congeneric compared with noncongeneric species pairs. Given the local spatial scales of our individual analyses, differences in the habitat preferences of species are unlikely to have caused these association patterns; the patterns observed are most likely the outcome of species interactions. Extending group-living and social-information-use theory to a heterospecific context, we discuss potential behavioral mechanisms that lead to positive interactions among similar species in flocks, as well as ways in which competition costs are reduced. Our findings highlight the need to consider positive interactions along with competition when seeking to explain community assembly.
Resumo:
We study the question of determining locations of base stations (BSs) that may belong to the same or to competing service providers. We take into account the impact of these decisions on the behavior of intelligent mobile terminals that can connect to the base station that offers the best utility. The signal-to-interference-plus-noise ratio (SINR) is used as the quantity that determines the association. We first study the SINR association-game: We determine the cells corresponding to each base stations, i.e., the locations at which mobile terminals prefer to connect to a given base station than to others. We make some surprising observations: 1) displacing a base station a little in one direction may result in a displacement of the boundary of the corresponding cell to the opposite direction; 2) a cell corresponding to a BS may be the union of disconnected subcells. We then study the hierarchical equilibrium in the combined BS location and mobile association problem: We determine where to locate the BSs so as to maximize the revenues obtained at the induced SINR mobile association game. We consider the cases of single frequency band and two frequency bands of operation. Finally, we also consider hierarchical equilibria in two frequency systems with successive interference cancellation.
Resumo:
Background: Recent research on glioblastoma (GBM) has focused on deducing gene signatures predicting prognosis. The present study evaluated the mRNA expression of selected genes and correlated with outcome to arrive at a prognostic gene signature. Methods: Patients with GBM (n = 123) were prospectively recruited, treated with a uniform protocol and followed up. Expression of 175 genes in GBM tissue was determined using qRT-PCR. A supervised principal component analysis followed by derivation of gene signature was performed. Independent validation of the signature was done using TCGA data. Gene Ontology and KEGG pathway analysis was carried out among patients from TCGA cohort. Results: A 14 gene signature was identified that predicted outcome in GBM. A weighted gene (WG) score was found to be an independent predictor of survival in multivariate analysis in the present cohort (HR = 2.507; B = 0.919; p < 0.001) and in TCGA cohort. Risk stratification by standardized WG score classified patients into low and high risk predicting survival both in our cohort (p = <0.001) and TCGA cohort (p = 0.001). Pathway analysis using the most differentially regulated genes (n = 76) between the low and high risk groups revealed association of activated inflammatory/immune response pathways and mesenchymal subtype in the high risk group. Conclusion: We have identified a 14 gene expression signature that can predict survival in GBM patients. A network analysis revealed activation of inflammatory response pathway specifically in high risk group. These findings may have implications in understanding of gliomagenesis, development of targeted therapies and selection of high risk cancer patients for alternate adjuvant therapies.
Resumo:
The recently discovered scalar resonance at the Large Hadron Collider is now almost confirmed to be a Higgs boson, whose CP properties are yet to be established. At the International Linear Collider with and without polarized beams, it may be possible to probe these properties at high precision. In this work, we study the possibility of probing departures from the pure CP-even case, by using the decay distributions in the process e(+)e(-) -> t (t) over bar Phi, with Phi mainly decaying into a b (b) over bar pair. We have compared the case of a minimal extension of the Standard Model case (model I) with an additional pseudoscalar degree of freedom, with a more realistic case namely the CP-violating two-Higgs doublet model (model II) that permits a more general description of the couplings. We have considered the International Linear Collider with root s = 800 GeV and integrated luminosity of 300 fb(-1). Our main findings are that even in the case of small departures from the CP-even case, the decay distributions are sensitive to the presence of a CP-odd component in model II, while it is difficult to probe these departures in model I unless the pseudoscalar component is very large. Noting that the proposed degrees of beam polarization increase the statistics, the process demonstrates the effective role of beam polarization in studies beyond the Standard Model. Further, our study shows that an indefinite CP Higgs would be a sensitive laboratory to physics beyond the Standard Model.
Resumo:
Background: Insulin like growth factor binding proteins modulate the mitogenic and pro survival effects of IGF. Elevated expression of IGFBP2 is associated with progression of tumors that include prostate, ovarian, glioma among others. Though implicated in the progression of breast cancer, the molecular mechanisms involved in IGFBP2 actions are not well defined. This study investigates the molecular targets and biological pathways targeted by IGFBP2 in breast cancer. Methods: Transcriptome analysis of breast tumor cells (BT474) with stable knockdown of IGFBP2 and breast tumors having differential expression of IGFBP2 by immunohistochemistry was performed using microarray. Differential gene expression was established using R-Bioconductor package. For validation, gene expression was determined by qPCR. Inhibitors of IGF1R and integrin pathway were utilized to study the mechanism of regulation of beta-catenin. Immunohistochemical and immunocytochemical staining was performed on breast tumors and experimental cells, respectively for beta-catenin and IGFBP2 expression. Results: Knockdown of IGFBP2 resulted in differential expression of 2067 up regulated and 2002 down regulated genes in breast cancer cells. Down regulated genes principally belong to cell cycle, DNA replication, repair, p53 signaling, oxidative phosphorylation, Wnt signaling. Whole genome expression analysis of breast tumors with or without IGFBP2 expression indicated changes in genes belonging to Focal adhesion, Map kinase and Wnt signaling pathways. Interestingly, IGFBP2 knockdown clones showed reduced expression of beta-catenin compared to control cells which was restored upon IGFBP2 re-expression. The regulation of beta-catenin by IGFBP2 was found to be IGF1R and integrin pathway dependent. Furthermore, IGFBP2 and beta-catenin are co-ordinately overexpressed in breast tumors and correlate with lymph node metastasis. Conclusion: This study highlights regulation of beta-catenin by IGFBP2 in breast cancer cells and most importantly, combined expression of IGFBP2 and beta-catenin is associated with lymph node metastasis of breast tumors.
Resumo:
A causative agent in approximately 40% of diarrhea] cases. still remains unidentified. Though many enteroviruses (EVs) are transmitted through fecal-oral route and replicate in the intestinal cells, their association with acute diarrhea has not so far been recognized due to lack of detailed epidemiological investigations. This long-term, detailed molecular epidemiological study aims to conclusively determine the association of non-polio enteroviruses (NPEVs) with acute diarrhea in comaparison with rotavirus (RV) in children. Diarrheal stool specimens from 2161 children aged 0-2 years and 169 children between 2 and 9 years, and 1800 normal stool samples from age-matched healthy children between 0 and 9 years were examined during 2008-2012 for enterovirus (oral polio vaccine strains (OPVs) and NPEVs). Enterovirus serotypes were identified by complete VP1 gene sequence analysis. Enterovirus and rotavirus were detected in 19.01% (380/2330) and 13.82% (322/2330) diarrheal stools. During the study period, annual prevalence of EV- and RV-associated diarrhea ranged between 8% and 22%, but with contrasting seasonal prevalence with RV predominating during winter months and NPEV prevailing in other seasons. NPEVs are associated with epidemics-like outbreaks during which they are detected in up to 50% of diarrheic children, and in non-epidemic seasons in 0-10% of the patients. After subtraction of OPV-positive diarrheal cases (1.81%), while NPEVs are associated with about 17% of acute diarrhea, about 6% of healthy children showed asymptomatic NPEV excretion. Of 37 NPEV serotypes detected in diarrheal children, seven echovirus types 1, 7, 11, 13, 14, 30 and 33 are frequently observed, with Ell being more prevalent followed by E30. In conclusion, NPEVs are significantly associated with acute diarrhea, and NPEVs and rotavirus exhibit contrasting seasonal predominance. This study signifies the need for a new direction of research on enteroviruses involving systematic analysis of their contribution to diarrheal burden. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
There is a growing recognition of the need to integrate non-trophic interactions into ecological networks for a better understanding of whole-community organization. To achieve this, the first step is to build networks of individual non-trophic interactions. In this study, we analyzed a network of interdependencies among bird species that participated in heterospecific foraging associations (flocks) in an evergreen forest site in the Western Ghats, India. We found the flock network to contain a small core of highly important species that other species are strongly dependent on, a pattern seen in many other biological networks. Further, we found that structural importance of species in the network was strongly correlated to functional importance of species at the individual flock level. Finally, comparisons with flock networks from other Asian forests showed that the same taxonomic groups were important in general, suggesting that species importance was an intrinsic trait and not dependent on local ecological conditions. Hence, given a list of species in an area, it may be possible to predict which ones are likely to be important. Our study provides a framework for the investigation of other heterospecific foraging associations and associations among species in other non-trophic contexts.
Resumo:
This paper deals with an optimization based method for synthesis of adjustable planar four-bar, crank-rocker mechanisms. For multiple different and desired paths to be traced by a point on the coupler, a two stage method first determines the parameters of the possible driving dyads. Then the remaining mechanism parameters are determined in the second stage where a least-squares based circle-fitting procedure is used. Compared to existing formulations, the optimization method uses less number of design variables. Two numerical examples demonstrate the effectiveness of the proposed synthesis method. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
In a typical enterprise WLAN, a station has a choice of multiple access points to associate with. The default association policy is based on metrics such as Re-ceived Signal Strength(RSS), and “link quality” to choose a particular access point among many. Such an approach can lead to unequal load sharing and diminished system performance. We consider the RAT (Rate And Throughput) policy [1] which leads to better system performance. The RAT policy has been implemented on home-grown centralized WLAN controller, ADWISER [2] and we demonstrate that the RAT policy indeed provides a better system performance.
Resumo:
Bird species are hypothesized to join mixed-species flocks (flocks hereon) either for direct foraging or anti-predation-related benefits. In this study, conducted in a tropical evergreen forest in the Western Ghats of India, we used intra-flock association patterns to generate a community-wide assessment of flocking benefits for different species. We assumed that individuals needed to be physically proximate to particular heterospecific individuals within flocks to obtain any direct foraging benefit (flushed prey, kleptoparasitism, copying foraging locations). Alternatively, for anti-predation benefits, physical proximity to particular heterospecifics is not required, i.e. just being in the flock vicinity can suffice. Therefore, we used choice of locations within flocks to infer whether individual species are obtaining direct foraging or anti-predation benefits. A small subset of the bird community (5/29 species), composed of all members of the sallying guild, showed non-random physical proximity to heterospecifics within flocks. All preferred associates were from non-sallying guilds, suggesting that the sallying species were likely obtaining direct foraging benefits either in the form of flushed or kleptoparasitized prey. The majority of the species (24/29) chose locations randomly with respect to heterospecifics within flocks and, thus, were likely obtaining antipredation benefits. In summary, our study indicates that direct foraging benefits are important for only a small proportion of species in flocks and that predation is likely to be the main driver of flocking for most participants. Our findings apart, our study provides methodological advances that might be useful in understanding asymmetric interactions in social groups of single and multiple species.
Resumo:
We consider the issue of the top quark Yukawa coupling measurement in a model-independent and general case with the inclusion of CP violation in the coupling. Arguably the best process to study this coupling is the associated production of the Higgs boson along with a t (t) over bar pair in a machine like the International Linear Collider (ILC). While detailed analyses of the sensitivity of the measurement-assuming a Standard Model (SM)-like coupling is available in the context of the ILC-conclude that the coupling could be pinned down to about a 10% level with modest luminosity, our investigations show that the scenario could be different in the case of a more general coupling. The modified Lorentz structure resulting in a changed functional dependence of the cross section on the coupling, along with the difference in the cross section itself leads to considerable deviation in the sensitivity. Our studies of the ILC with center-of-mass energies of 500 GeV, 800 GeV, and 1000 GeV show that moderate CP mixing in the Higgs sector could change the sensitivity to about 20%, while it could be worsened to 75% in cases which could accommodate more dramatic changes in the coupling. Detailed considerations of the decay distributions point to a need for a relook at the analysis strategy followed for the case of the SM, such as for a model-independent analysis of the top quark Yukawa coupling measurement. This study strongly suggests that a joint analysis of the CP properties and the Yukawa coupling measurement would be the way forward at the ILC and that caution must be exercised in the measurement of the Yukawa couplings and the conclusions drawn from it.
Resumo:
Background: We recently reported significant association of non-polio enteroviruses (NPEVs) with acute diarrhea in children. Persistent diarrhea (PD) remains a major cause of morbidity and mortality in infants below two years of age in developing countries. Understanding age-dependent frequency and duration of NPEV infections is important to determine their association with persistent diarrhea and disease burden. Objectives: A cohort of 140 infants was followed for 6 months to 2 years of age to determine the frequency, duration, and association with PD of NPEV infections in comparison with rotavirus and other agents. Study design: Stool samples were collected every 14 days, and diarrheal episodes and their duration were recorded. Enteroviruses were characterized by RT-PCR and VP1 gene sequence analysis, rotavirus by electropherotyping, and other agents by PCR. Results: Of 4545 samples, negative for oral polio vaccine strains, 3907 (85.96%) and 638 (14.04%) were NPEV-negative and NPEV-positive, respectively, representing 403 (8.87%) infection episodes. About 68% of NPEV infections occurred during the first year with every child having at least one episode lasting between four days and four months. Approximately 38% and 22% of total diarrheal episodes were positive for NPEV and RV, respectively. While about 18% of NPEV infection episodes were associated with diarrhea, 6% being persistent, 13% of total diarrheal episodes were persistent involving infections by monotype NPEV strains or sequential infections by multiple strains and other agents. Conclusions: This is the first report revealing NPEVs as the single most frequently and persistently detected viral pathogen in every PD episode. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The disclosure of information and its misuse in Privacy Preserving Data Mining (PPDM) systems is a concern to the parties involved. In PPDM systems data is available amongst multiple parties collaborating to achieve cumulative mining accuracy. The vertically partitioned data available with the parties involved cannot provide accurate mining results when compared to the collaborative mining results. To overcome the privacy issue in data disclosure this paper describes a Key Distribution-Less Privacy Preserving Data Mining (KDLPPDM) system in which the publication of local association rules generated by the parties is published. The association rules are securely combined to form the combined rule set using the Commutative RSA algorithm. The combined rule sets established are used to classify or mine the data. The results discussed in this paper compare the accuracy of the rules generated using the C4. 5 based KDLPPDM system and the CS. 0 based KDLPPDM system using receiver operating characteristics curves (ROC).
Resumo:
We investigated the nature of the cohesive energy between graphane sheets via multiple CH center dot center dot center dot HC interactions, using density functional theory (DFT) including dispersion correction (Grimmes D3 approach) computations of n]graphane sigma dimers (n = 6-73). For comparison, we also evaluated the binding between graphene sheets that display prototypical pi/pi interactions. The results were analyzed using the block-localized wave function (BLW) method, which is a variant of ab initio valence bond (VB) theory. BLW interprets the intermolecular interactions in terms of frozen interaction energy (Delta E-F) composed of electrostatic and Pauli repulsion interactions, polarization (Delta E-pol), charge-transfer interaction (Delta E-CT), and dispersion effects (Delta E-disp). The BLW analysis reveals that the cohesive energy between graphane sheets is dominated by two stabilizing effects, namely intermolecular London dispersion and two-way charge transfer energy due to the sigma CH -> sigma*(HC) interactions. The shift of the electron density around the nonpolar covalent C-H bonds involved in the intermolecular interaction decreases the C-H bond lengths uniformly by 0.001 angstrom. The Delta E-CT term, which accounts for similar to 15% of the total binding energy, results in the accumulation of electron density in the interface area between two layers. This accumulated electron density thus acts as an electronic glue for the graphane layers and constitutes an important driving force in the self-association and stability of graphane under ambient conditions. Similarly, the double faced adhesive tape style of charge transfer interactions was also observed among graphene sheets in which it accounts for similar to 18% of the total binding energy. The binding energy between graphane sheets is additive and can be expressed as a sum of CH center dot center dot center dot HC interactions, or as a function of the number of C-H bonds.