866 resultados para Neural-Like Networks
Resumo:
Purpose - The purpose of this paper is to provide information on lubricant contamination by biodiesel using vibration and neural network.Design/methodology/approach - The possible contamination of lubricants is verified by analyzing the vibration and neural network of a bench test under determinated conditions.Findings - Results have shown that classical signal analysis methods could not reveal any correlation between the signal and the presence of contamination, or contamination grade. on other hand, the use of probabilistic neural network (PNN) was very successful in the identification and classification of contamination and its grade.Research limitations/implications - This study was done for some specific kinds of biodiesel. Other types of biodiesel could be analyzed.Practical implications Contamination information is presented in the vibration signal, even if it is not evident by classical vibration analysis. In addition, the use of PNN gives a relatively simple and easy-to-use detection tool with good confidence. The training process is fast, and allows implementation of an adaptive training algorithm.Originality/value - This research could be extended to an internal combustion engine in order to verify a possible contamination by biodiesel.
Resumo:
Investigaremos, a partir da perspectiva da Ciência Cognitiva, a noção de representação mental, no domínio da percepção visual humana. Ênfase é dada ao paradigma Conexionista, ou de Redes Neurais, de acordo com o qual tais representações mentais são descritas como estruturas emergentes da interação entre sistemas de processamento de informação que se auto-organizam - tais como o cérebro - e a luz estruturada no meio ambiente. Sugerimos que essa noção de representação mental indica uma solução para uma antiga polêmica, entre Representacionalistas e Eliminativistas, acerca da existência de representações mentais no sistema perceptual humano.
Resumo:
RePART (Reward/Punishment ART) is a neural model that constitutes a variation of the Fuzzy Artmap model. This network was proposed in order to minimize the inherent problems in the Artmap-based model, such as the proliferation of categories and misclassification. RePART makes use of additional mechanisms, such as an instance counting parameter, a reward/punishment process and a variable vigilance parameter. The instance counting parameter, for instance, aims to minimize the misclassification problem, which is a consequence of the sensitivity to the noises, frequently presents in Artmap-based models. On the other hand, the use of the variable vigilance parameter tries to smoouth out the category proliferation problem, which is inherent of Artmap-based models, decreasing the complexity of the net. RePART was originally proposed in order to minimize the aforementioned problems and it was shown to have better performance (higer accuracy and lower complexity) than Artmap-based models. This work proposes an investigation of the performance of the RePART model in classifier ensembles. Different sizes, learning strategies and structures will be used in this investigation. As a result of this investigation, it is aimed to define the main advantages and drawbacks of this model, when used as a component in classifier ensembles. This can provide a broader foundation for the use of RePART in other pattern recognition applications
Resumo:
Remote sensing is one technology of extreme importance, allowing capture of data from the Earth's surface that are used with various purposes, including, environmental monitoring, tracking usage of natural resources, geological prospecting and monitoring of disasters. One of the main applications of remote sensing is the generation of thematic maps and subsequent survey of areas from images generated by orbital or sub-orbital sensors. Pattern classification methods are used in the implementation of computational routines to automate this activity. Artificial neural networks present themselves as viable alternatives to traditional statistical classifiers, mainly for applications whose data show high dimensionality as those from hyperspectral sensors. This work main goal is to develop a classiffier based on neural networks radial basis function and Growing Neural Gas, which presents some advantages over using individual neural networks. The main idea is to use Growing Neural Gas's incremental characteristics to determine the radial basis function network's quantity and choice of centers in order to obtain a highly effective classiffier. To demonstrate the performance of the classiffier three studies case are presented along with the results.
Resumo:
Mobile robots need autonomy to fulfill their tasks. Such autonomy is related whith their capacity to explorer and to recognize their navigation environments. In this context, the present work considers techniques for the classification and extraction of features from images, using artificial neural networks. This images are used in the mapping and localization system of LACE (Automation and Evolutive Computing Laboratory) mobile robot. In this direction, the robot uses a sensorial system composed by ultrasound sensors and a catadioptric vision system equipped with a camera and a conical mirror. The mapping system is composed of three modules; two of them will be presented in this paper: the classifier and the characterizer modules. Results of these modules simulations are presented in this paper.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study was carried out to determine possible panicogenic effects of strychnine administered in subconvulsive doses to rats. Two experiments were conducted to assess two major features of panic in animal models: panic-related flight (through the observation of wild running [WR]) and defensive fights. In the first one, 20 adult male Wistar rats were injected with six different doses of strychnine ranging from 0.5 to 4.0 mg/kg. After 15 min of free observation, the animals were submitted to high-intensity acoustic stimulation and the incidence of WR was recorded. Higher doses of strychnine (above 2.5 mg/kg) easily evoked seizures, but lower doses raised the incidence of WR in a dose-dependent manner. The most effective dose for WR (1.5 mg/kg) was used in the second experiment, in which we investigated the effects of strychnine on sleep-deprivation-induced fights (SDIFs) that have defensive characteristics. For this purpose, 40 subjects were submitted to 5 days of REM-sleep deprivation by the single-platform method and were then assigned into two groups, i.e., strychnine vs. control. After the injections, the animals were observed in social groupings for SDIF recordings over a period of 60 min. The strychnine-treated groups had more SDIF than the control groups (P<.05, Mann-Whitney U test). We conclude that the high level of neural excitability promoted by partial blockade of the glycinergic system can contribute to the manifestation of panic reactions. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The accurate determination of thermophysical properties of milk is very important for design, simulation, optimization, and control of food processing such as evaporation, heat exchanging, spray drying, and so forth. Generally, polynomial methods are used for prediction of these properties based on empirical correlation to experimental data. Artificial neural networks are better Suited for processing noisy and extensive knowledge indexing. This article proposed the application of neural networks for prediction of specific heat, thermal conductivity, and density of milk with temperature ranged from 2.0 to 71.0degreesC, 72.0 to 92.0% of water content (w/w), and 1.350 to 7.822% of fat content (w/w). Artificial neural networks presented a better prediction capability of specific heat, thermal conductivity, and density of milk than polynomial modeling. It showed a reasonable alternative to empirical modeling for thermophysical properties of foods.
Resumo:
In most of the cases, the systems of water distribution from groundwater wells use electrical submersible pumps. All electrical energy is applied to the pumps; however, other components (pipes, valves, etc.) of these systems are also responsible by the higher or lower consumption of electric energy. The supervisors and operators of the systems should thus have knowledge of the global energetic behavior of the process in order to administrate it properly. This work suggests a 'Global Energetic Efficiency Indicator' for groundwater wells by using mathematical equations and neural networks. Simulation results will be presented in order to demonstrate the validity of the proposed approach.
Resumo:
This paper presents a non-model based technique to detect and locate structural damage with the use of artificial neural networks. This method utilizes high frequency structural excitation (typically greater than 30 kHz) through a surface-bonded piezoelectric sensor/actuator to detect changes in structural point impedance due to the presence of damage. Two sets of artificial neural networks were developed in order to detect, locate and characterize structural damage by examining changes in the measured impedance curves. A simulation beam model was developed to verify the proposed method. An experiment was successfully performed in detecting damage on a 4-bay structure with bolted-joints, where the bolts were progressively released.
Resumo:
Neural networks consist of highly interconnected and parallel nonlinear processing elements that are shown to be extremely effective in computation. This paper presents an architecture of recurrent neural net-works that can be used to solve several classes of optimization problems. More specifically, a modified Hopfield network is developed and its inter-nal parameters are computed explicitly using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points, which represent a solution of the problem considered. The problems that can be treated by the proposed approach include combinatorial optimiza-tion problems, dynamic programming problems, and nonlinear optimization problems.
Resumo:
dIn this work, a perceptron neural-network technique is applied to estimate hourly values of the diffuse solar-radiation at the surface in São Paulo City, Brazil, using as input the global solar-radiation and other meteorological parameters measured from 1998 to 2001. The neural-network verification was performed using the hourly measurements of diffuse solar-radiation obtained during the year 2002. The neural network was developed based on both feature determination and pattern selection techniques. It was found that the inclusion of the atmospheric long-wave radiation as input improves the neural-network performance. on the other hand traditional meteorological parameters, like air temperature and atmospheric pressure, are not as important as long-wave radiation which acts as a surrogate for cloud-cover information on the regional scale. An objective evaluation has shown that the diffuse solar-radiation is better reproduced by neural network synthetic series than by a correlation model. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The neutral wire in most power flow software is usually merged into phase wires using Kron's reduction. Since the neutral wire and the ground are not explicitly represented, neutral wire and ground currents and voltages remain unknown. In some applications, like power quality and safety analyses, loss analysis, etc., knowing the neutral wire and ground currents and voltages could be of special interest. In this paper, a general power flow algorithm for three-phase four-wire radial distribution networks, considering neutral grounding, based on backward-forward technique, is proposed. In this novel use of the technique, both the neutral wire and ground are explicitly represented. A problem of three-phase distribution system with earth return, as a special case of a four-wire network, is also elucidated. Results obtained from several case studies using medium- and low-voltage test feeders with unbalanced load, are presented and discussed.
Resumo:
This paper traces the development of a software tool, based oil a combination of artificial neural networks (ANN) and a few process equations. aiming to serve as a backup operation instrument in the reference generation for real-time controllers of a steel tandem cold mill By emulating the mathematical model responsible for generating presets under normal operational conditions, the system works as ail option to maintain plant operation in the event of a failure in the processing unit that executes the mathematical model. The system, built from the production data collected over six years of plant operation, steered to the replacement of the former backup operation mode (based oil a lookup table). which degraded both product quality and plant productivity. The study showed that ANN are appropriated tools for the intended purpose and that by this instrument it is possible to achieve nearly the totality of the presets needed by this land of process. The text characterizes the problem, relates the investigated options to solve it. justifies the choice of the ANN approach, describes the methodology and system implementation and, finally, shows and discusses the attained results. (C) 2009 Elsevier Ltd. All rights reserved
Resumo:
Concept drift is a problem of increasing importance in machine learning and data mining. Data sets under analysis are no longer only static databases, but also data streams in which concepts and data distributions may not be stable over time. However, most learning algorithms produced so far are based on the assumption that data comes from a fixed distribution, so they are not suitable to handle concept drifts. Moreover, some concept drifts applications requires fast response, which means an algorithm must always be (re) trained with the latest available data. But the process of labeling data is usually expensive and/or time consuming when compared to unlabeled data acquisition, thus only a small fraction of the incoming data may be effectively labeled. Semi-supervised learning methods may help in this scenario, as they use both labeled and unlabeled data in the training process. However, most of them are also based on the assumption that the data is static. Therefore, semi-supervised learning with concept drifts is still an open challenge in machine learning. Recently, a particle competition and cooperation approach was used to realize graph-based semi-supervised learning from static data. In this paper, we extend that approach to handle data streams and concept drift. The result is a passive algorithm using a single classifier, which naturally adapts to concept changes, without any explicit drift detection mechanism. Its built-in mechanisms provide a natural way of learning from new data, gradually forgetting older knowledge as older labeled data items became less influent on the classification of newer data items. Some computer simulation are presented, showing the effectiveness of the proposed method.